摘要:
A method of forming a phase change material layer includes preparing a substrate having an insulator and a conductor, loading the substrate into a process housing, injecting a deposition gas into the process housing to selectively form a phase change material layer on an exposed surface of the conductor, and unloading the substrate from the process housing, wherein a lifetime of the deposition gas in the process housing is shorter than a time the deposition gas takes to react by thermal energy.
摘要:
A method of forming a phase change material layer includes preparing a substrate having an insulator and a conductor, loading the substrate into a process housing, injecting a deposition gas into the process housing to selectively form a phase change material layer on an exposed surface of the conductor, and unloading the substrate from the process housing, wherein a lifetime of the deposition gas in the process housing is shorter than a time the deposition gas takes to react by thermal energy.
摘要:
A gap filling method and a method for forming a memory device, including forming an insulating layer on a substrate, forming a gap region in the insulating layer, and repeatedly forming a phase change material layer and etching the phase change material layer to form a phase change material layer pattern in the gap region.
摘要:
A gap filling method and a method for forming a memory device, including forming an insulating layer on a substrate, forming a gap region in the insulating layer, and repeatedly forming a phase change material layer and etching the phase change material layer to form a phase change material layer pattern in the gap region.
摘要:
A phase changeable material layer usable in a semiconductor memory device and a method of forming the same are disclosed. The method includes forming a plasma in a chamber having a substrate disposed therein, providing a first source gas including a germanium based material to form a first layer including the germanium based material on the substrate while maintaining the plasma in the chamber, providing a second source gas including a tellurium based material to react with the first layer to form a first composite material layer including a germanium-tellurium composite material on the substrate while maintaining the plasma in the chamber, providing a third source gas including an antimony based material to form a second layer including the antimony based material on the first composite material layer while maintaining the plasma in the chamber, and providing a fourth source gas including tellurium based material to react with the second layer including antimony based material to form a second composite material layer including an antimony-tellurium composite material on the first composite material layer. Accordingly, the phase changeable material layer may be formed at a low temperature and power to have desirable electrical characteristics.
摘要:
A method of fabricating a phase-change random-access memory (RAM) device includes forming a chalcogenide material on a substrate. A bottom contact is formed under the chalcogenide material, the bottom contact comprising TiAlN. Forming the bottom contact includes performing an atomic layer deposition (ALD) process, the ALD process including introducing an NH3 source gas into a chamber in which the ALD process is being carried out, a flow amount of the NH3 gas being such that the resulting bottom contact has a chlorine content of less than 1 at %. The bottom contact can include TiAlN having a crystallinity in terms of full-width half-maximum (FWHM) of less than about 0.65 degree.
摘要:
A phase changeable material layer usable in a semiconductor memory device and a method of forming the same are disclosed. The method includes forming a plasma in a chamber having a substrate disposed therein, providing a first source gas including a germanium based material to form a first layer including the germanium based material on the substrate while maintaining the plasma in the chamber, providing a second source gas including a tellurium based material to react with the first layer to form a first composite material layer including a germanium-tellurium composite material on the substrate while maintaining the plasma in the chamber, providing a third source gas including an antimony based material to form a second layer including the antimony based material on the first composite material layer while maintaining the plasma in the chamber, and providing a fourth source gas including tellurium based material to react with the second layer including antimony based material to form a second composite material layer including an antimony-tellurium composite material on the first composite material layer. Accordingly, the phase changeable material layer may be formed at a low temperature and power to have desirable electrical characteristics.
摘要:
A germanium (Ge) compound is provided. The Ge compound has a chemical formula GeR1xR2y. “R1” is an alkyl group, and “R2” is one of hydrogen, amino group, allyl group and vinyl group. “x” is greater than zero and less than 4, and the sum of “x” and “y” is equal to 4. Methods of forming the Ge compound, methods of fabricating a phase change memory device using the Ge compound, and phase change memory devices fabricated using the Ge compound are also provided.
摘要:
In one embodiment, a phase-change memory device has an oxidation barrier layer to protect against memory cell contamination or oxidation and a method of manufacturing the same. In one embodiment, a semiconductor memory device comprises a molding layer overlying a semiconductor substrate. The molding layer has a protrusion portion vertically extending from a top surface thereof. The device further includes a phase-changeable material pattern adjacent the protrusion portion and a lower electrode electrically connected to the phase-changeable material pattern.
摘要:
A phase-change memory device has an oxidation barrier layer to protect against memory cell contamination or oxidation. In one embodiment, a semiconductor memory device includes a molding layer disposed over semiconductor substrate, a phase-changeable material pattern, and an oxidation barrier of electrically insulative material. The molding layer has a protrusion at its upper portion. One portion of the phase-changeable material pattern overlies the protrusion of the molding layer, and another portion of the phase-changeable material pattern extends through the protrusion. The electrically insulative material of the oxidation barrier may cover the phase-changeable material pattern and/or extend along and cover the entire area at which the protrusion of the molding layer and the portion of the phase-change material pattern disposed on the protrusion adjoin.