摘要:
A germanium (Ge) compound is provided. The Ge compound has a chemical formula GeR1xR2y. “R1” is an alkyl group, and “R2” is one of hydrogen, amino group, allyl group and vinyl group. “x” is greater than zero and less than 4, and the sum of “x” and “y” is equal to 4. Methods of forming the Ge compound, methods of fabricating a phase change memory device using the Ge compound, and phase change memory devices fabricated using the Ge compound are also provided.
摘要:
A method of forming a phase change material layer includes preparing a substrate having an insulator and a conductor, loading the substrate into a process housing, injecting a deposition gas into the process housing to selectively form a phase change material layer on an exposed surface of the conductor, and unloading the substrate from the process housing, wherein a lifetime of the deposition gas in the process housing is shorter than a time the deposition gas takes to react by thermal energy.
摘要:
A gap filling method and a method for forming a memory device, including forming an insulating layer on a substrate, forming a gap region in the insulating layer, and repeatedly forming a phase change material layer and etching the phase change material layer to form a phase change material layer pattern in the gap region.
摘要:
A gap filling method and a method for forming a memory device, including forming an insulating layer on a substrate, forming a gap region in the insulating layer, and repeatedly forming a phase change material layer and etching the phase change material layer to form a phase change material layer pattern in the gap region.
摘要:
A phase changeable material layer usable in a semiconductor memory device and a method of forming the same are disclosed. The method includes forming a plasma in a chamber having a substrate disposed therein, providing a first source gas including a germanium based material to form a first layer including the germanium based material on the substrate while maintaining the plasma in the chamber, providing a second source gas including a tellurium based material to react with the first layer to form a first composite material layer including a germanium-tellurium composite material on the substrate while maintaining the plasma in the chamber, providing a third source gas including an antimony based material to form a second layer including the antimony based material on the first composite material layer while maintaining the plasma in the chamber, and providing a fourth source gas including tellurium based material to react with the second layer including antimony based material to form a second composite material layer including an antimony-tellurium composite material on the first composite material layer. Accordingly, the phase changeable material layer may be formed at a low temperature and power to have desirable electrical characteristics.
摘要:
A method of fabricating a phase-change random-access memory (RAM) device includes forming a chalcogenide material on a substrate. A bottom contact is formed under the chalcogenide material, the bottom contact comprising TiAlN. Forming the bottom contact includes performing an atomic layer deposition (ALD) process, the ALD process including introducing an NH3 source gas into a chamber in which the ALD process is being carried out, a flow amount of the NH3 gas being such that the resulting bottom contact has a chlorine content of less than 1 at %. The bottom contact can include TiAlN having a crystallinity in terms of full-width half-maximum (FWHM) of less than about 0.65 degree.
摘要:
A phase changeable material layer usable in a semiconductor memory device and a method of forming the same are disclosed. The method includes forming a plasma in a chamber having a substrate disposed therein, providing a first source gas including a germanium based material to form a first layer including the germanium based material on the substrate while maintaining the plasma in the chamber, providing a second source gas including a tellurium based material to react with the first layer to form a first composite material layer including a germanium-tellurium composite material on the substrate while maintaining the plasma in the chamber, providing a third source gas including an antimony based material to form a second layer including the antimony based material on the first composite material layer while maintaining the plasma in the chamber, and providing a fourth source gas including tellurium based material to react with the second layer including antimony based material to form a second composite material layer including an antimony-tellurium composite material on the first composite material layer. Accordingly, the phase changeable material layer may be formed at a low temperature and power to have desirable electrical characteristics.
摘要:
Provided are a phase change memory device and a method for forming the phase change memory device. The method includes forming a phase change material layer by providing reactive radicals to a substrate. The reactive radicals may comprise precursors for a phase change material and nitrogen.
摘要:
Provided are a phase change memory device and a method for forming the phase change memory device. The method includes forming a phase change material layer by providing reactive radicals to a substrate. The reactive radicals may comprise precursors for a phase change material and nitrogen.
摘要:
Provided are methods of fabricating a semiconductor device including a phase change layer. Methods may include forming a dielectric layer on a substrate, forming an opening in the dielectric layer and depositing, on the substrate having the opening, a phase change layer that contains an element that lowers a process temperature of a thermal treatment process to a temperature that is lower than a melting point of the phase change layer. Methods may include migrating a portion of the phase change layer from outside the opening, into the opening by the thermal treatment process that includes the process temperature that is lower than the melting point of the phase change layer.