摘要:
The present disclosure provides a resistive-switching device capable of implementing multiary addition operation and a method for implementing multiary addition operation using the resistive-switching device. The resistive-switching device has a plurality of resistance values each corresponding to a respective data value stored by the resistive-switching device and ranging from a high resistance value to a low resistance value. The data value stored by the resistive-switching device is increased by ‘1’ successively with a series of set pulses having a same pulse width and a same voltage amplitude being applied thereto. The data value stored by the resistive-switching device is set to ‘0’ with a reset pulse being applied thereto, and meanwhile a data value stored by a higher-bit resistive-switching device is increased by ‘1’ with a set pulse being applied thereto. In this way, multiary addition operation is implemented.
摘要:
A neuron device includes a bottom electrode, a top electrode, and a layer of metal oxide variable resistance material sandwiched between the bottom electrode and the top electrode, in which the neuron device is switched to a normal state upon application of reset pulse, and is switched to an excitation state upon application of stimulus pulses. The neuron device has a comprehensive response to different amplitude, different width of a stimulus voltage pulse and different number of a sequence of stimulus pulses, and provides functionalities of a weighting section and a computing section. The neuron device has a simple structure, excellent scalability, quick speed, low operation voltage, and is compatible with the conventional silicon-based CMOS fabrication process, and thus suitable for mass production. The neuron device is capable of performing many biological functions and complex logic operations.
摘要:
The present disclosure provides a resistive-switching device capable of implementing multiary addition operation and a method for implementing multiary addition operation using the resistive-switching device. The resistive-switching device has a plurality of resistance values each corresponding to a respective data value stored by the resistive-switching device and ranging from a high resistance value to a low resistance value. The data value stored by the resistive-switching device is increased by ‘1’ successively with a series of set pulses having a same pulse width and a same voltage amplitude being applied thereto. The data value stored by the resistive-switching device is set to ‘0’ with a reset pulse being applied thereto, and meanwhile a data value stored by a higher-bit resistive-switching device is increased by ‘1’ with a set pulse being applied thereto. In this way, multiary addition operation is implemented. The operation of the resistive-switching device can implement data storage and the multiary addition operation simultaneously, and thus substantially simplifies the circuit structure. As a result, the data storage can be integrated with calculation.
摘要:
A neuron device includes a bottom electrode, a top electrode, and a layer of metal oxide variable resistance material sandwiched between the bottom electrode and the top electrode, in which the neuron device is switched to a normal state upon application of reset pulse, and is switched to an excitation state upon application of stimulus pulses. The neuron device has a comprehensive response to different amplitude, different width of a stimulus voltage pulse and different number of a sequence of stimulus pulses, and provides functionalities of a weighting section and a computing section. The neuron device has a simple structure, excellent scalability, quick speed, low operation voltage, and is compatible with the conventional silicon-based CMOS fabrication process, and thus suitable for mass production. The neuron device is capable of performing many biological functions and complex logic operations.
摘要:
A resistive random access memory device, a method for manufacturing the resistive random access memory device, and a method for operating the resistive random access memory device are disclosed. The resistive random access memory device includes a resistive switching memory element including two electrodes and a layer of variable-resistance material between the two electrodes, wherein the layer of variable-resistance material exhibits bipolar resistive switching behavior; and a Schottky diode including a metal layer and a p-doped semiconductor layer which contact each other, wherein the metal layer of the Schottky diode is coupled to one of the two electrodes of the resistive switching memory element. The present disclosure provides the resistive random access memory device operating in bipolar resistive switching scheme.
摘要:
A resistive random access memory device, a method for manufacturing the resistive random access memory device, and a method for operating the resistive random access memory device are disclosed. The resistive random access memory device includes a resistive switching memory element including two electrodes and a layer of variable-resistance material between the two electrodes, wherein the layer of variable-resistance material exhibits bipolar resistive switching behavior; and a Schottky diode including a metal layer and a p-doped semiconductor layer which contact each other, wherein the metal layer of the Schottky diode is coupled to one of the two electrodes of the resistive switching memory element. The present disclosure provides the resistive random access memory device operating in bipolar resistive switching scheme.
摘要:
The invention provides a method of testing reliability of a semiconductor device, wherein the semiconductor device has negative bias temperature instability NBTI. The method comprises steps of: measuring a NBTI curve of a first set of semiconductor devices; measuring 1/f noise power spectrum density and drain current at a predetermined frequency for the first set of the semiconductor devices, under a condition that the first set of the semiconductor devices are biased at a gate electric field; measuring an equivalent oxide thickness EOT of gate dielectric of the first set of the semiconductor devices; measuring 1/f noise power spectrum density and drain current at the predetermined frequency for a second set of semiconductor devices, under a condition that the second set of the semiconductor devices are biased at the gate electric field; measuring an EOT of gate dielectric of the second set of the semiconductor devices; and evaluating a degradation characteristic of the second set of the semiconductor devices by using the NBTI curve of a first set of the semiconductor devices. The method saves the time required for testing the reliability of a large numbers of semiconductor devices, and will not cause damages to the second set of semiconductor devices.
摘要:
The invention provides a method of testing reliability of a semiconductor device, wherein the semiconductor device has negative bias temperature instability NBTI. The method comprises steps of: measuring a NBTI curve of a first set of semiconductor devices; measuring 1/f noise power spectrum density and drain current at a predetermined frequency for the first set of the semiconductor devices, under a condition that the first set of the semiconductor devices are biased at a gate electric field; measuring an equivalent oxide thickness EOT of gate dielectric of the first set of the semiconductor devices; measuring 1/f noise power spectrum density and drain current at the predetermined frequency for a second set of semiconductor devices, under a condition that the second set of the semiconductor devices are biased at the gate electric field; measuring an EOT of gate dielectric of the second set of the semiconductor devices; and evaluating a degradation characteristic of the second set of the semiconductor devices by using the NBTI curve of a first set of the semiconductor devices. The method saves the time required for testing the reliability of a large numbers of semiconductor devices, and will not cause damages to the second set of semiconductor devices.
摘要:
A solar cell includes a cathode component, an anode component, sealant for assembling the cathode component and the anode component to form a closed space, and electrolyte accommodated in the closed space, in which the cathode component contains a lower transparent conductive substrate, a nano-oxide semiconductor thin film formed on the lower transparent conductive substrate, and dye attached to a nano-particle surface of the nano-oxide semiconductor thin film; and the anode component contains an upper transparent conductive substrate, and an anode electrode layer formed on the upper transparent conductive substrate, the nano-oxide semiconductor thin film and the anode electrode layer being arranged opposite to each other and contacting with the electrolyte, in which the anode component further contains a CdTe layer which is patterned to have an opening, and the anode electrode layer is located in the opening of the CdTe layer.