Abstract:
An M-way coupler having a first port, M second ports, M transmission line sections, M isolation resistors and a phase shifting network is disclosed, where M is an integer number greater than 1. The M transmission line sections couple the first port to the M second ports, respectively. Each of the M isolation resistors has a first terminal and a second terminal. The first terminals of the M isolation resistors are coupled to the M second ports, respectively. The phase shifting network has M I/O terminals coupled to the second terminals of the M isolation resistors, respectively. The phase shifting network is arranged to provide a phase shift within a predetermined tolerance margin between arbitrary two I/O terminals of the M I/O terminals of the phase shifting network.
Abstract translation:公开了具有第一端口,M个第二端口,M个传输线路段,M个隔离电阻器和一个移相网络的M路耦合器,其中M是大于1的整数.M个传输线段将第一端口耦合到 M个第二个端口。 每个M个隔离电阻具有第一端子和第二端子。 M个隔离电阻器的第一个端子分别耦合到M个第二端口。 相移网络具有分别耦合到M个隔离电阻器的第二端子的M I / O端子。 相移网络被布置成在相移网络的M I / O端子的任意两个I / O端子之间提供预定容限裕度内的相移。
Abstract:
A charge pump being disposed in a phase locking system. The charge pump includes a sourcing element, a draining element and an offset element. The sourcing element is arranged to selectively source a first current into an output terminal of the charge pump according to a first control signal, and the draining element is arranged to selectively drain a second current from the output terminal according to a second control signal. The offset element is arranged to selectively conduct an offset current via the output terminal according to a third control signal, and one of the sourcing element and the draining element is disabled when the phase locking system is in a phase-locked state.
Abstract:
An embodiment of the voltage controlled oscillator is provided. The oscillator comprises a first inductor set, a second inductor set, a second capacitor, a voltage source and a negative resistance element. The inductance of the second inductor set is k times the inductance of the first inductor set. The voltage source applies an ac voltage to the second inductor set. The negative resistance element is coupled to the second inductor set to provide a negative resistance to resonate the second capacitor at the second inductor set.
Abstract:
An error predict code is added into a cycle signal for raising precision of an output signal of a time-to-digital (TDC) decoder. A cyclic TDC (CTDC) is specifically designed within a phase-frequency detector (PFD)/CTDC module of an all-digital phase-locked loop (ADPLL) for enhancing loop bandwidth calibration of the ADPLL. A calibration method is used on the PFD/CTDC module for enhancing the loop bandwidth calibration of the ADPLL as well.
Abstract:
For decreasing errors within an analog phase-locked loop, an all-digital phase-locked loop (ADPLL) with digital components and digital operations is used. The ADPLL may also be used for direct frequency modulation (DFM). By defining a proportional path gain of an ADPLL by a bandwidth and a reference frequency of the ADPLL, by a TDC gain, a DCO gain, a dividing ratio of a frequency divider, a gain of an amplifier or a combination thereof, the gain of the amplifier may be adjusted so that an optimal loop bandwidth of the ADPLL may be well calibrated. For achieving the aim of entirely digital of the ADPLL, the gains of the TDC and the DCO may be further adjusted in a digital manner.
Abstract:
A data slice circuit and the method thereof The data slice circuit comprises a digitizer, a finite state machine, and a digitizer parameter adjustment element. The digitizer receives an analog signal and converts to a digital signal. The finite state machine generates a state signal in response to the digital signal. The digitizer parameter adjustment element generates a parameter adjustment signal in response to the state signal from the finite state machine. The digital signal of the digitizer is adjusted in accordance with the parameter adjustment signal.
Abstract:
The calibration method, performed on a phased array device including channel elements coupled in parallel by a transmission line, has the steps of: obtaining channel responses corresponding to the channel elements through the transmission line, and each of the channel responses is obtained when one of the channel elements is turned on, and the rest of the channel elements are turned off; calculating a characteristic value corresponding to the transmission line based on the obtained channel responses of the channel elements; and adjusting a channel parameter of one of the channel elements based on the characteristic value of the transmission line.
Abstract:
An apparatus for duty cycle calibration includes an input calibration circuit, a delay chain, a first comparator, and a second comparator. The input calibration circuit calibrates an input clock signal according to a first control signal so as to generate an input calibration clock signal. The delay chain includes a plurality of delay units coupled in series, and delays the input calibration clock signal so as to generate a first delay clock signal and a second delay clock signal. At least two of the delay units each have an adjustable delay time which is controlled according to a second control signal. The first comparator compares the input calibration clock signal with the first delay clock signal so as to generate the first control signal. The second comparator compares the input calibration clock signal with the second delay clock signal so as to generate the second control signal.
Abstract:
An error protection method for a time-to-digital converter (TDC) decoder of an all-digital phase-locked loop (ADPLL) includes: retrieving a digital code received by the TDC decoder; retrieving a cycle code received by the TDC decoder; performing an exclusive-or operation on a first predetermined bit of the digital code and a second predetermined bit of the cycle code for generating an error protection code; and using the error protection code to fix errors within the cycle code by adding the error protection code into the cycle code and shifting the cycle code by a third predetermined number of bits.
Abstract:
A phased-array transceiver includes: a plurality of antennas; a plurality of transceiving elements respectively coupled to the plurality of antennas, at least one of the transceiving elements comprising a first transmitting circuit and a first receiving circuit; a signal processing block; and a first distributed network, coupled between the signal processing block and the transceiving elements, wherein the transceiving elements, the signal processing block, and the first distributed network are configured as a single chip, and a first path from the antenna through the first receiving circuit to the signal processing block and a second path from the signal processing block through the first transmitting circuit to the antenna share at least partial signal traces of the phased-array transceiver.