摘要:
A method includes forming a first dielectric layer over a substrate; forming nanoclusters over the first dielectric layer; forming a second dielectric layer over the nanoclusters; annealing the second dielectric layer using nitrous oxide; and after the annealing the second dielectric layer, forming a gate electrode over the second dielectric layer.
摘要:
A method includes forming a first dielectric layer over a substrate; forming nanoclusters over the first dielectric layer; forming a second dielectric layer over the nanoclusters; annealing the second dielectric layer using nitrous oxide; and after the annealing the second dielectric layer, forming a gate electrode over the second dielectric layer.
摘要:
Nanocrystals are formed over an insulating layer by depositing a semiconductor layer over the insulating layer. The semiconductor layer is annealed to form a plurality of globules from the semiconductor layer. The globules are annealed using oxygen. Semiconductor material is deposited on the plurality of globules to add semiconductor material to the globules. After depositing the semiconductor material, the globules are annealed to form the nanocrystals. The nanocrystals can then be used in a storage layer of a non-volatile memory cell, especially a split-gate non-volatile memory cell having a select gate over the nanocrystals and a control gate adjacent to the select gate.
摘要:
Nanocrystals are formed over an insulating layer by depositing a semiconductor layer over the insulating layer. The semiconductor layer is annealed to form a plurality of globules from the semiconductor layer. The globules are annealed using oxygen. Semiconductor material is deposited on the plurality of globules to add semiconductor material to the globules. After depositing the semiconductor material, the globules are annealed to form the nanocrystals. The nanocrystals can then be used in a storage layer of a non-volatile memory cell, especially a split-gate non-volatile memory cell having a select gate over the nanocrystals and a control gate adjacent to the select gate.
摘要:
A method of making a non-volatile memory (NVM) cell using a substrate having a top surface of silicon includes forming a select gate stack over the substrate. An oxide layer is grown on the top surface of the substrate. Nanocrystals of silicon are formed on the thermal oxide layer adjacent to a first side the select gate stack. The nanocrystals are partially oxidized to result in partially oxidized nanocrystals and further growing the thermal oxide layer. A control gate is formed over the partially oxidized nanocrystals. A first doped region is formed in the substrate adjacent to a first side of the control gate and a second doped region in the substrate adjacent to a second side of the select gate.
摘要:
A method for forming a semiconductor structure includes providing a semiconductor layer, forming nanocrystals over the semiconductor layer, and using a solution comprising pure water, hydrogen peroxide, and ammonium hydroxide to remove at least a portion of the nanocrystals. A ratio by volume of pure water to ammonium hydroxide of the solution may be equivalent to or less than a ratio by volume of 10:1 of pure water to ammonium hydroxide when ammonium hydroxide has a concentration of 29% ammonia by weight. The step of using the solution to remove the at least a portion of the nanocrystals may be performed at a temperature of 50 degrees Celsius or more.
摘要:
A non-volatile memory device includes a substrate and a charge storage layer. The charge storage layer comprises a bottom layer of oxide, a layer of discrete charge storage elements on the bottom layer of oxide, and a top layer of oxide on the charge storage elements. A control gate is on the top layer of oxide. A surface of the top layer of oxide facing a surface of the control gate is substantially planar.
摘要:
A memory comprising a plurality of P-channel split-gate memory cells are organized in rows and columns. Each of the plurality of P-channel split-gate memory cells comprises a select gate, a control gate, a source region, a drain region, a channel region, and a charge storage layer comprising nanocrystals. Programming a memory cell of the plurality of P-channel split-gate memory cells comprises injecting electrons from a channel region of the memory cell to the charge storage layer. Erasing the memory cell comprises injecting holes from the channel region to the charge storage region.
摘要:
A memory comprising a plurality of P-channel split-gate memory cells are organized in rows and columns. Each of the plurality of P-channel split-gate memory cells comprises a select gate, a control gate, a source region, a drain region, a channel region, and a charge storage layer comprising nanocrystals. Programming a memory cell of the plurality of P-channel split-gate memory cells comprises injecting electrons from a channel region of the memory cell to the charge storage layer. Erasing the memory cell comprises injecting holes from the channel region to the charge storage region.
摘要:
A method of making a semiconductor device on a semiconductor layer is provided. The method includes: forming a select gate dielectric layer over the semiconductor layer; forming a select gate layer over the select gate dielectric layer; and forming a sidewall of the select gate layer by removing at least a portion of the select gate layer. The method further includes growing a sacrificial layer on at least a portion of the sidewall of the select gate layer and under at least a portion of the select gate layer and removing the sacrificial layer to expose a surface of the at least portion of the sidewall of the select gate layer and a surface of the semiconductor layer under the select gate layer. The method further includes forming a control gate dielectric layer, a charge storage layer, and a control gate layer.