摘要:
Methods of fracturing a subterranean formation include providing a fracturing fluid having a first pH. The fracturing fluid may be made by combining a gelling agent, a surfactant, and a proppant. The surfactant is capable of facilitating foaming of the fracturing fluid at the first pH and defoaming of the fracturing fluid when its pH is changed to a second pH. The methods of fracturing the subterranean formation further include foaming the fracturing fluid having the first pH and subsequently pumping it to the subterranean formation to fracture the formation. The pH of the fracturing fluid changes to a second pH, for example via in situ contact with an acidic material, causing the level of foam in the fracturing fluid to be reduced. As a result of the reduction of the foam, the fracturing fluid deposits the proppant into the fractures formed in the subterranean formation.
摘要:
Foamed treatment fluids comprising water, a gas, and a foaming and foam stabilizing surfactant mixture comprising an alkali salt of an alkyl ether sulfate, wherein the alkali salt of the alkyl ether sulfate comprises an alkali salt of a C6-10 alkyl ether sulfate, and an alkali salt of a C4 alkyl ether sulfate, an alkyl amidopropyl amphoteric surfactant selected from the group consisting of an alkyl amidopropyl hydroxysultaine, an alkyl amidopropyl betaine, and combinations thereof, and an alkyl amidopropyl dimethylamine oxide. Methods comprising providing the foamed treatment fluid and introducing the foamed treatment fluid into a subterranean formation.
摘要:
Embodiments relate to improving the performance of anionic friction reducing polymers in water containing multivalent ions. Exemplary embodiments relate to methods of improving the performance of anionic friction reducing polymers in a subterranean treatment, wherein the method comprises adding a complexing agent to water comprising multivalent ions. The method comprises adding the anionic friction reducing polymer to the water comprising the multivalent ions, wherein the anionic friction reducing polymer is added in an amount less than or equal to about 0.15% by weight of the water. The method comprises introducing the water comprising the multivalent ions, the complexing agent and the anionic friction reducing polymer into at least a portion of the subterranean formation such that the friction reducing polymer reduces energy loss due to turbulence in the water. The complexing agent complexes with at least a portion of the multivalent ions in the water such that the reduction of energy loss by the friction reducing polymer is improved.
摘要:
Fracturing fluids and methods of fracturing a subterranean formation using such fluids are provided. A fracturing fluid having a first pH is foamed by introducing a gas to the fluid. The fracturing fluid comprises a surfactant that facilitates formation of the foam at the first pH. The foamed fracturing fluid is subsequently pumped to the subterranean formation to fracture it. The pH of the fracturing fluid is then changed to a second pH at which the surfactant facilitates reduction of the foam. The fracturing fluid releases proppant contained in the fluid to the subterranean formation. The fracturing fluid is then allowed to flow back to the surface. It can be recycled by changing the pH of the fracturing fluid back to the first pH and adding a gas to the fluid, causing it to foam again.
摘要:
Foamed treatment fluids comprising water, a gas, and a foaming and foam stabilizing surfactant mixture comprising an alkali salt of an alkyl ether sulfate, wherein the alkali salt of the alkyl ether sulfate comprises an alkali salt of a C6-10 alkyl ether sulfate, and an alkali salt of a C4 alkyl ether sulfate, an alkyl amidopropyl amphoteric surfactant selected from the group consisting of an alkyl amidopropyl hydroxysultaine, an alkyl amidopropyl betaine, and combinations thereof, and an alkyl amidopropyl dimethylamine oxide. Methods comprising providing the foamed treatment fluid and introducing the foamed treatment fluid into a subterranean formation.
摘要:
Embodiments relate to improving the performance of anionic friction reducing polymers in water containing multivalent ions. Exemplary embodiments relate to methods of improving the performance of anionic friction reducing polymers in a subterranean treatment, wherein the method comprises adding a complexing agent to water comprising multivalent ions. The method comprises adding the anionic friction reducing polymer to the water comprising the multivalent ions, wherein the anionic friction reducing polymer is added in an amount less than or equal to about 0.15% by weight of the water. The method comprises introducing the water comprising the multivalent ions, the complexing agent and the anionic friction reducing polymer into at least a portion of the subterranean formation such that the friction reducing polymer reduces energy loss due to turbulence in the water. The complexing agent complexes with at least a portion of the multivalent ions in the water such that the reduction of energy loss by the friction reducing polymer is improved.
摘要:
Methods of treating subterranean formations using foamed treatment fluids comprising water, a gas, and a foaming and foam stabilizing surfactant mixture comprising a plurality of alkali salts of alkyl ether sulfates wherein the alkyl group in each of the alkyl ether sulfates has in the range of from 4 carbon atoms to 10 carbon atoms, an alkyl amidopropyl hydroxysultaine or an alkyl amidopropyl betaine, and an alkyl amidopropyl dimethylamine oxide.
摘要:
Methods of treating subterranean formations using foamed treatment fluids comprising water, a gas, and a foaming and foam stabilizing surfactant mixture comprising a plurality of alkali salts of alkyl ether sulfates wherein the alkyl group in each of the alkyl ether sulfates has in the range of from 4 carbon atoms to 10 carbon atoms, an alkyl amidopropyl hydroxysultaine or an alkyl amidopropyl betaine, and an alkyl amidopropyl dimethylamine oxide.
摘要:
Fracturing fluids and methods of fracturing a subterranean formation using such fluids are provided. A fracturing fluid having a first pH is foamed by introducing a gas to the fluid. The fracturing fluid comprises a surfactant that facilitates formation of the foam at the first pH. The foamed fracturing fluid is subsequently pumped to the subterranean formation to fracture it. The pH of the fracturing fluid is then changed to a second pH at which the surfactant facilitates reduction of the foam. The fracturing fluid releases proppant contained in the fluid to the subterranean formation. The fracturing fluid is then allowed to flow back to the surface. It can be recycled by changing the pH of the fracturing fluid back to the first pH and adding a gas to the fluid, causing it to foam again.
摘要:
Of the many compositions provided herein, an embodiment includes a foamed cement composition comprising a cementitious component, an oil-swellable particle comprising at least one swellable elastomer selected from the group consisting of acrylate butadiene rubber, polyacrylate rubber, isoprene rubber, choloroprene rubber, butyl rubber, brominated butyl rubber, chlorinated butyl rubber, chlorinated polyethylene, neoprene rubber, styrene butadiene block copolymer, sulphonated polyethylene, ethylene acrylate rubber, epichlorohydrin ethylene oxide copolymer, ethylene-propylene rubber, ethylene vinyl acetate copolymer, fluorosilicone rubber, silicone rubber, and combinations thereof, a foaming and stabilizing surfactant, gas, and water. Another embodiment includes a foamed cement composition comprising a cementitious component, an oil-swellable particle comprising a block copolymer of styrene butadiene rubber, a foaming and stabilizing surfactant, and gas.