摘要:
Methods of cementing comprising: providing a cement composition comprising a cement, water, and a fluid loss control additive comprising a cationic cellulose ether, the cationic cellulose ether comprising a backbone of anhydroglucose units and a plurality of positively charged substituent groups spaced along the backbone; placing the cement composition into a location to be cemented; and allowing the cement composition to set therein. Cement compositions comprising a cement; water, and a fluid loss control additive comprising a cationic cellulose ether, the cationic cellulose ether comprising a backbone of anhydroglucose units and a plurality of positively charged substituent groups spaced along the backbone. Fluid loss control additives comprising: a cationic cellulose ether, the cationic cellulose ether comprising a backbone of anhydroglucose units and a plurality of positively charged substituent groups spaced along the backbone; and a dispersant.
摘要:
The present invention relates to foamed cement slurries, additives and methods. A foamed cement slurry of the invention comprises a hydraulic cement, sufficient water to form a slurry, sufficient gas to form a foam and an environmentally benign foaming and stabilizing additive comprising a mixture of an ammonium salt of an alkyl ether sulfate surfactant, a cocoamidopropyl betaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride and water.
摘要:
Methods of using cement compositions that comprise basalt fibers in subterranean formations are provided. An example of such a method may comprise providing a cement composition that comprises water, a hydraulic cement, and a plurality of basalt fibers; introducing the cement composition into a subterranean formation; allowing the cement composition to set therein. Also provided are methods of cementing a pipe string in a well bore and methods of enhancing the compressive strength of a cement composition.
摘要:
Methods of cementing and low density foamed cement compositions therefor are disclosed. A low density foamed cement composition of the invention comprises fly ash comprising calcium oxide or calcium hydroxide, water present in an amount sufficient to form a slurry, a foaming and foam stabilizing surfactant or a mixture of surfactants present in an amount sufficient to facilitate foam and stabilize the foamed cement composition, and sufficient gas to foam the foamed cement composition.
摘要:
Methods of cementing comprising: providing a cement composition comprising a cement, water, and a fluid loss control additive comprising a cationic cellulose ether, the cationic cellulose ether comprising a backbone of anhydroglucose units and a plurality of positively charged substituent groups spaced along the backbone; placing the cement composition into a location to be cemented; and allowing the cement composition to set therein. Cement compositions comprising a cement; water, and a fluid loss control additive comprising a cationic cellulose ether, the cationic cellulose ether comprising a backbone of anhydroglucose units and a plurality of positively charged substituent groups spaced along the backbone. Fluid loss control additives comprising: a cationic cellulose ether, the cationic cellulose ether comprising a backbone of anhydroglucose units and a plurality of positively charged substituent groups spaced along the backbone; and a dispersant.
摘要:
Cement compositions that include improved lost circulation materials are provided. In certain exemplary embodiments, the improved lost circulation materials include inelastic particles of polyethylene, polystyrene, and/or polypropylene. Optionally, the cement compositions also may include additives such as fly ash, a surfactant, a dispersant, a fluid loss control additive, a conventional lost circulation material, an accelerator, a retarder, a salt, a mica, fiber, a formation-conditioning agent, fumed silica, bentonite, expanding additives, microspheres, weighting materials, or a defoamer.
摘要:
Resilient cement compositions and methods of cementing using the compositions are disclosed. A resilient cement composition of the invention comprises hydraulic cement, an aqueous rubber latex and a rubber latex stabilizing surfactant comprising an iso-dodecyl alcohol ether sulfonate ethoxylated with from about 10 to about 20 moles of ethylene oxide.
摘要:
The present invention relates to cementing operations and, more particularly, to foamed cement compositions, foaming and stabilizing additives, and associated methods. A foaming and stabilizing additive, that comprises a mixture of an alkali salt of an alkyl ether sulfate surfactant, wherein the alkali salt of the alkyl ether sulfate surfactant comprises a mixture of an alkali salt of a C6-10 alkyl ether sulfate surfactant, and an alkali salt of a C2-4 alkyl ether sulfate surfactant, an alkyl or alkene amidopropyl betaine surfactant, an alkyl or alkene amidopropyl dimethylamine oxide surfactant, sodium chloride, and water, is provided. Also provided are foamed cement compositions that comprise the foaming and stabilizing additive, and associated methods.
摘要:
Methods and compositions are provided that may comprise cement, a nano-particle, latex, and water. An embodiment of the present invention includes a method of cementing in a subterranean formation. The method may include introducing a cement composition into the subterranean formation, wherein the cement composition comprises cement, a nano-particle, latex, and water. The method further may include allowing the cement composition to set in the subterranean formation. Another embodiment of the present invention include a cement composition. The cement composition may comprise cement, a nano-particle, latex, and water.
摘要:
Disclosed embodiments relate to well treatment fluids and methods that utilize nano-particles. Exemplary nano-particles are selected from the group consisting of particulate nano-silica, nano-alumina, nano-zinc oxide, nano-boron, nano-iron oxide, and combinations thereof. Embodiments also relate to methods of cementing that include the use of nano-particles. An exemplary method of cementing comprises introducing a cement composition into a subterranean formation, wherein the cement composition comprises cement, water and a particulate nano-silica. Embodiments also relate to use of nano-particles in drilling fluids, completion fluids, stimulation fluids, and well clean-up fluids.