摘要:
Techniques adapted for use with recharging a rechargeable power source of an implantable device. One aspect relates to providing a flexible primary coil that can be transcutaneously coupled to a secondary coil of the implantable device. Multiple adjacent turns of the coil are grouped via lacing to form bundles. The bundles have at least one dimension that is selected to be a same size as a predetermined thickness of the coil. In one embodiment, the dimension is a diameter of the bundle. In another embodiment, the dimension is at least one of a length or width of the bundle. Insulating overmolding may be provided over the coil. In one embodiment, the resulting antenna structure is bidirectional such that substantially the same performance characteristics are obtained during recharge regardless of which of two major surfaces of the antenna is placed in proximity to the patient.
摘要:
Techniques adapted for use with recharging a rechargeable power source of an implantable device. One aspect relates to providing a flexible primary coil that can be transcutaneously coupled to a secondary coil of the implantable device. Multiple adjacent turns of the coil are grouped via lacing to form bundles. The bundles have at least one dimension that is selected to be a same size as a predetermined thickness of the coil. In one embodiment, the dimension is a diameter of the bundle. In another embodiment, the dimension is at least one of a length or width of the bundle. Insulating overmolding may be provided over the coil. In one embodiment, the resulting antenna structure is bidirectional such that substantially the same performance characteristics are obtained during recharge regardless of which of two major surfaces of the antenna is placed in proximity to the patient.
摘要:
Devices, systems, and techniques for managing heat generated in coils for wireless energy transmission are disclosed. Inductive coupling between two coils may be used to recharge the power source of an implantable medical device. A phase change material may be thermally coupled to a flexible coil to absorb heat generated during the inductive coupling and reduce temperature increases of the flexible coil. The flexible coil may be configured to at least one of transmit energy to or receive energy from a second coil, and the phase change material may be configured to deform with the flexible coil and absorb heat from the flexible coil. The phase change material may be contained within thermally conductive tubes or channels configured in shapes that promote flexibility of the flexible coil.
摘要:
Devices, systems, and techniques for managing heat generated in coils for wireless energy transmission are disclosed. Inductive coupling between two coils may be used to recharge the power source of an implantable medical device. A phase change material may be thermally coupled to a flexible coil to absorb heat generated during the inductive coupling and reduce temperature increases of the flexible coil. The flexible coil may be configured to at least one of transmit energy to or receive energy from a second coil, and the phase change material may be configured to deform with the flexible coil and absorb heat from the flexible coil. The phase change material may be contained within thermally conductive tubes or channels configured in shapes that promote flexibility of the flexible coil.
摘要:
Devices, systems, and techniques for managing heat generated in coils for wireless energy transmission are disclosed. Inductive coupling between two coils (e.g., a primary coil and a secondary coil) may be used to recharge the power source of an implantable medical device. A phase change material may be thermally coupled to the primary coil to absorb heat generated during the inductive coupling and reduce temperature increases of the primary coil. In one example, the phase change material may be configured to absorb heat from an energy transfer coil. A housing may be configured to contain the phase change material and a coupling mechanism may be configured to removably attach the housing to the energy transfer coil.
摘要:
Devices, systems, and techniques for managing heat generated in coils for wireless energy transmission are disclosed. Inductive coupling between two coils (e.g., a primary coil and a secondary coil) may be used to recharge the power source of an implantable medical device. A phase change material may be thermally coupled to the primary coil to absorb heat generated during the inductive coupling and reduce temperature increases of the primary coil. In one example, the phase change material may be configured to absorb heat from an energy transfer coil. A housing may be configured to contain the phase change material and a coupling mechanism may be configured to removably attach the housing to the energy transfer coil.
摘要:
A connector assembly for detachably coupling a proximal end of a lead and an implantable medical device. The connector assembly includes a deflectable connector clip having a first arm, a second arm and a top portion extending between the first arm and the second arm. The first arm and the second arm detachably position the proximal end of the lead within the implantable medical device. A housing portion has a first deflection portion that deflects the connector clip from a first position corresponding to a first distance between the first arm and the second arm, to a second position corresponding to a second distance between the first arm and the second arm. Subsequent advancement of the lead through the first and second arms further deflects the connector clip from the second position to a third position, which transfers all of the spring force of the connector clip to the lead.
摘要:
An implantable medical device includes a housing having frame with one or more openings. The openings of the frame are covered with a thin metallic foil that is welded to the frame to provide a hermetic seal. Non-conductive members may be placed in or about the openings to provide a backing or structural support for the metallic foil. By decreasing the mass of conductive material capable of forming eddy currents, improved recharge or telemetry performance may be realized.
摘要:
An implantable medical device includes a housing having frame with one or more openings. The openings of the frame are covered with a thin metallic foil that is welded to the frame to provide a hermetic seal. Non-conductive members may be placed in or about the openings to provide a backing or structural support for the metallic foil. By decreasing the mass of conductive material capable of forming eddy currents, improved recharge or telemetry performance may be realized.
摘要:
A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a preferably planar, major bottom portion, an open top to receive the cover opposing the bottom portion, and a plurality of sides being radiused at intersections with each other and with the bottom to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device. The cover and the shallow case being substantially hermetically sealed by a laser weld technique and an insulator member disposed within the case to provide a barrier to incident laser radiation so that during welding radiation does not impinge upon radiation sensitive component(s) disposed within the case.