摘要:
Systems and methods for high-throughput fabrication and evaluation of electrode and electrolyte material performance for solid oxide fuel cells. A system comprising a substrate, an auto-sampler operable for simultaneously controlling the flow rates of 2 or more solid oxide fuel cell components, a delivery apparatus, a mass flow controller, an x-y motion stage, and a microprocessor operable for controlling the system. A method comprising providing a library of samples, continuously and controllably supplying desired amounts of the samples to a liquid chromatography system where a multi-compositional mixture is formed, serially loading the multi-compositional mixture into a common sprayer, serially and distributively spraying the multi-compositional mixture onto a surface of a substrate, forming a discrete or continuous gradient array of the mixture reacted on the substrate, and evaluating the performance of the mixture for use in solid oxide fuel cells.
摘要:
A metal-air battery is disclosed. The battery includes a sodium anode and an air cathode. The battery further includes a solid electrolyte. The sodium anode may be a molten sodium anode, and the solid electrolyte may be a beta alumina solid electrolyte. The battery has an operating temperature between 100° C. and 200° C.
摘要:
A method of making a molten sodium battery is disclosed. A first metallic interconnect frame having a first interconnect vent hole is provided. A second metallic interconnect frame having a second interconnect vent hole is also provided. An electrolyte plate having a cathode vent hole and an anode vent hole is interposed between the metallic interconnect frames. The metallic interconnect frames and the electrolyte plate are sealed thereby forming gaseous communication between an anode chamber through the anode vent hole and gaseous communication between a cathode chamber through the cathode vent hole.
摘要:
A new battery configuration and process are detailed. The battery cell includes a solid electrolyte configured with an engineered metallization layer that distributes sodium across the surface of the electrolyte extending the active area of the cathode in contact with the anode during operation. The metallization layer enhances performance, efficiency, and capacity of sodium batteries at intermediate temperatures at or below about 200° C.
摘要:
A method of making a molten sodium battery is disclosed. A first metallic interconnect frame having a first interconnect vent hole is provided. A second metallic interconnect frame having a second interconnect vent hole is also provided. An electrolyte plate having a cathode vent hole and an anode vent hole is interposed between the metallic interconnect frames. The metallic interconnect frames and the electrolyte plate are sealed thereby forming gaseous communication between an anode chamber through the anode vent hole and gaseous communication between a cathode chamber through the cathode vent hole.
摘要:
A new battery configuration and process are detailed. The battery cell includes a solid electrolyte configured with an engineered metallization layer that distributes sodium across the surface of the electrolyte extending the active area of the cathode in contact with the anode during operation. The metallization layer enhances performance, efficiency, and capacity of sodium batteries at intermediate temperatures at or below about 200° C.
摘要:
Electrochemical energy storage devices having a metal anode and a solid-state, metal-ion exchange membrane and are characterized by an interfacial layer between the anode and the membrane, wherein the interfacial layer is a solid solution comprising the metal anode and a metallic interfacial conducting agent.
摘要:
Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm.
摘要:
Modified surfaces on metal anodes for batteries can help resist formation of malfunction-inducing surface defects. The modification can include application of a protective nanocomposite coating that can inhibit formation of surface defects. such as dendrites, on the anode during charge/discharge cycles. For example, for anodes having a metal (M′), the protective coating can be characterized by products of chemical or electrochemical dissociation of a nanocomposite containing a polymer and an exfoliated compound (Ma′Mb″Xc). The metal, M′, comprises Li, Na, or Zn. The exfoliated compound comprises M′ among lamella of Mb″Xc, wherein M″ is Fe, Mo, Ta, W, or V, and X is S, O, or Se.
摘要:
A thin-film photovoltaic solar cell device is disclosed. A transparent conductive oxide (TCO) layer is disposed on a substrate as a front contact. A window layer is disposed on the TCO layer. A metal oxide layer is disposed on the window layer. An absorber layer is disposed on the metal oxide layer. A back contact layer is disposed on the absorber layer. In one embodiment, the device includes a high resistance barrier (HRT) layer interposed between the window layer and the TCO layer.