摘要:
An electrochromic cell includes a minimally color changing polymer (MCCP) and a non-color changing polymer (NCCP), where the neutral state or the oxidized state is highly transmissive in the NIR and the oxidized state or the neutral state, respectively, is significantly less transmissive in the NIR. An electrochromic device (ECD) can include the electrochromic cell, or a combination of electrochromic cells. The ECD can be part of a window or a laminate for a window to permit the control of IR transmittance through the window.
摘要:
A dual active electrochromic device is a combination of at least two working electrodes that contain electrochromic materials and at least one counter electrode where the potentials between each working electrode and a counter electrode are independently supplied. No more than one electrode is reflective. The color of the device results from the additive color of the electrochromic materials and varies according to the potentials applied independently. The electrochromic materials can be electrochromic polymers that are deposited as film on substrates to form the working electrodes. The electrochromic device can be used for display or window applications.
摘要:
An electrochromic cell includes a minimally color changing polymer (MCCP) and a non-color changing polymer (NCCP), where the neutral state or the oxidized state is highly transmissive in the NIR and the oxidized state or the neutral state, respectively, is significantly less transmissive in the NIR. An electrochromic device (ECD) can include the electrochromic cell, or a combination of electrochromic cells. The ECD can be part of a window or a laminate for a window to permit the control of IR transmittance through the window.
摘要:
An electrochromic device (ECD) includes an electrochromic cell and, optionally, one or more additional electrochromic cells where all cells are parallel, and where at least one of the electrodes of one of the cells comprises a single-walled carbon nanotube (SWNT) film The electrochromic cells allow the control of transmittance of two or more different portions of the electro-magnetic spectrum through the ECD. One cell can control the transmittance of visible radiation while the other cell can control the transmittance of IR radiation. The ECD can be employed as a “smart window” to control the heat and light transmission through the window. The ECD can be in the form of a laminate that can be added to an existing window.
摘要:
A dual electrochromic/electroluminescent (EC/EL) device of at least one pixel includes an interdigitated electrode where an electroactive layer is dispersed on and between the digits of the two electrodes of the interdigitated electrode. The electroactive layer is in contact with an electrolyte layer that also contacts a third electrode. The device acts as an electroluminescence device when an electrical bias between the two electrodes of the interdigitated electrode is established. The device acts as an electrochromic device when the electrical bias is established between the combined electrodes of the interdigitated electrode and the third electrode.
摘要:
A dual active electrochromic device is a combination of at least two working electrodes that contain electrochromic materials and at least one counter electrode where the potentials between each working electrode and a counter electrode are independently supplied. No more than one electrode is reflective. The color of the device results from the additive color of the electrochromic materials and varies according to the potentials applied independently. The electrochromic materials can be electrochromic polymers that are deposited as film on substrates to form the working electrodes. The electrochromic device can be used for display or window applications.
摘要:
Embodiments of the invention are directed to yellow-to-transmissive conjugated polymers, a method to prepare the yellow conjugated polymers, the use of the yellow conjugated polymers in an electrochromic and/or electroluminescent device comprising neutral state primary subtractive colored conjugated polymers, and a method to prepare the device comprising the yellow conjugated polymer. The yellow conjugated polymers comprise a sequence of dioxythiophene units alternating with aromatic units, thiophene units, furan units, and/or pyrrole units. The yellow conjugated polymers are prepared by cross-condensation reactions. The yellow conjugated polymers can be soluble and preparation of the device involves deposition of the yellow conjugated polymer from solution onto a surface.
摘要:
Embodiments of the invention are directed to yellow-to-transmissive conjugated polymers, a method to prepare the yellow conjugated polymers, the use of the yellow conjugated polymers in an electrochromic and/or electroluminescent device comprising neutral state primary subtractive colored conjugated polymers, and a method to prepare the device comprising the yellow conjugated polymer. The yellow conjugated polymers comprise a sequence of dioxythiophene units alternating with aromatic units, thiophene units, furan units, and/or pyrrole units. The yellow conjugated polymers are prepared by cross-condensation reactions. The yellow conjugated polymers can be soluble and preparation of the device involves deposition of the yellow conjugated polymer from solution onto a surface.
摘要:
A dual electrochromic/electroluminescent (EC/EL) device of at least one pixel includes an interdigitated electrode where an electroactive layer is dispersed on and between the digits of the two electrodes of the interdigitated electrode. The electroactive layer is in contact with an electrolyte layer that also contacts a third electrode. The device acts as an electroluminescence device when an electrical bias between the two electrodes of the interdigitated electrode is established. The device acts as an electrochromic device when the electrical bias is established between the combined electrodes of the interdigitated electrode and the third electrode.
摘要:
A degradable polymeric nanotube (NT) dispersant comprises a multiplicity of NT associative groups that are connected to a polymer backbone by a linking group where there are cleavable groups within the polymer backbone and/or the linking groups such that on a directed change of conditions, bond breaking of the cleavable groups results in residues from the degradable polymeric NT dispersant in a manner where the associative groups are uncoupled from other associative groups, rendering the associative groups monomelic in nature. The degradable polymeric nanotube (NT) dispersant can be combined with carbon NTs to form a NT dispersion that can be deposited to form a NT film, or other structure, by air brushing, electrostatic spraying, ultrasonic spraying, ink-jet printing, roll-to-roll coating, or dip coating. The deposition can render a NT film that is of a uniform thickness or is patterned with various thicknesses. Upon deposition of the film, the degradable polymeric nanotube (NT) dispersant can be cleaved and the cleavage residues removed from the film to yield a film where contact between NTs is unencumbered by dispersants, resulting in highly conductive NT films.