Abstract:
The present invention is directed to methods for making magnetically modified electrodes and electrodes made according to the method. Such electrode are useful as electrodes in batteries, such as Ni-MH batteries, Ni—Cd batteries, Ni—Zn batteries and Ni—Fe batteries.
Abstract:
A method of diagnosing the health of an individual by collecting a breath sample from the individual and measuring the amount of each of a plurality of analytes in the sample. The amount of each analytes is measured by fitting a time response curve of a sample-evaluation fuel cell in which the fuel cell sample electrode is contacted with the sample with the analysis based on a function of standard time response curves for an equivalent fuel cell configuration obtained separately for each of the analytes on a fuel cell with equivalent construction as sample-evaluation fuel cell. Each of the plurality of analytes is generally indicative of an aspect of the individual's health. Suitable analytes include, for example, inorganic compounds as well as compositions that exhibit negative reduction reactions at least for a portion of the time response curve. In particular, acetone exhibits a negative potential/current peak when it is an analyte in a fuel cell in an sample electrode with a counter electrode exposed to oxygen, which may or may not be introduced in the form of air. Various forms of analysis to estimate acetone concentrations in the breath can be used.
Abstract:
A method of diagnosing the health of an individual by collecting a breath sample from the individual and measuring the amount of each of a plurality of analytes in the sample. The amount of each analytes is measured by fitting a time response curve of a sample-evaluation fuel cell in which the fuel cell sample electrode is contacted with the sample with the analysis based on a function of standard time response curves for an equivalent fuel cell configuration obtained separately for each of the analytes on a fuel cell with equivalent construction as sample-evaluation fuel cell. Each of the plurality of analytes is generally indicative of an aspect of the individual's health. Suitable analytes include, for example, inorganic compounds as well as compositions that exhibit negative reduction reactions at least for a portion of the time response curve. In particular, acetone exhibits a negative potential/current peak when it is an analyte in a fuel cell in an sample electrode with a counter electrode exposed to oxygen, which may or may not be introduced in the form of air. Various forms of analysis to estimate acetone concentrations in the breath can be used.
Abstract:
Amounts of volatile organic compositions can be evaluated from vapor samples based on the time dependent response of a fuel cell contacted with the vapor sample at its anode. The time response of the fuel cell signal, e.g., voltage or current, is de-convoluted using a set of standard curves for an equivalent fuel cell configuration obtained separately for each of the volatile organic compositions of a fuel cell with an equivalent construction as the sample-evaluation fuel cell. The methodology can be implemented on a system with an appropriate vapor collection device suitable for the particular application. The method and system can be used to analyze breath samples to evaluate ethanol levels or other volatile organic composition. The system can be a breathalyzer, a vehicle interlock, a medical analysis device or a sensor of environmental or industrial interest.
Abstract:
Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and effect transport and separation of different species of materials. A variety of devices can be made utilizing the composites including a separator, a cell, an electrode for channeling flux of magnetic species, an electrode for effecting electrolysis of magnetic species, a system for channeling electrolyte species, a system for separating particles with different magnetic susceptibilities. Some composites can be used to make a dual sensor for distinguishing between two species of materials and a flux switch to regulate the flow of a redox species and a flux switch to regulate the flow of a chemical species. Some composites can control chemical species transport and distribution.
Abstract:
Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and batteries and effect transport and separation of different species of materials, for example, transition metal species such as lanthanides and actinides. A variety of devices can be made utilizing the composites including a separator, an electrode for channeling flux of magnetic species, an electrode for effecting electrolysis of magnetic species, a system for channeling electrolyte species, a system for separating particles with different magnetic susceptibilities, improved fuel cells, batteries, and oxygen concentrators. Some composites can be used to make a separator for distinguishing between two species of materials and a flux switch to regulate the flow of a chemical species. Some composites can control chemical species transport and distribution. Other composites enable ambient pressure fuel cells having enhanced performance and reduced weight to be produced. Still other composites enable rechargeable batteries to be made that have longer secondary cycle life and improved output power. Methods involving these composites provide distinct ways for these composites to be utilized.
Abstract:
Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and effect transport and separation of different species of materials. A variety of devices can be made utilizing the composites including a separator, a cell, an electrode for channeling flux of magnetic species, an electrode for effecting electrolysis of magnetic species, a system for channeling electrolyte species, a system for separating particles with different magnetic susceptibilities. Some composites can be used to make a dual sensor for distinguishing between two species of materials and a flux switch to regulate the flow of a redox species and a flux switch to regulate the flow of a chemical species. Some composites can control chemical species transport and distribution.
Abstract:
A method for coating a surface with a magnetic composite material exhibiting distinct flux properties due to gradient interfaces within the composite. Surfaces coated with such a composite can be used to improve fuel cells and to effect improved transport and separation of different species of materials. A wide variety of devices can incorporate such composite-coated surfaces, including separators, fuel cells, electrochemical cells, and electrodes for channeling flux of, or for effecting electrolysis of, magnetic species.
Abstract:
Electrochemically reacting C-1 compounds including carbon dioxide, formic acid, formaldehyde, methanol, carbon monoxide in the presence of at least one lanthanide and/or at least one actinide. Reducing carbon dioxide or reacting C-1 compounds such as HCOOH (formic acid), HCHO (formaldehyde), CH3OH (methanol), or CO (carbon monoxide) with use of an electrochemical device, wherein the device comprises at least one cathode, and at least one anode, and at least one electrolyte between the cathode and the anode, wherein the electrolyte comprises at least one lanthanide and/or actinide compound. The electrode can be modified with a film such as an ionically conducting or ionically permeable film, optionally comprising a magnetic material. Polar organic solvent such as acetonitrile can be used. Electrocatalysis and/or reaction mediation is observed. Devices can be adapted to carry out the methods. The device can be part of a fuel cell, a battery, an electrolyzer, or an electrosynthetic device.
Abstract:
The present invention is directed to methods for determining electron transfer rates in systems involving metalloproteins. Metalloprotein/substrate electron transfer rates as well as metalloprotein self exchange rates may be modeled. Such electron transfer rates are useful in smart drug design and enzyme engineering.