摘要:
Methods for the enhancement of plant disease resistance are provided. The methods comprise transforming said plant with a gene encoding &bgr;-glucosidase and increasing the expression said gene above wild-type levels. Transformed plants, plant cells and seeds are provided. Disease resistant transformed plants, plant cells and seeds are also provided.
摘要:
Compositions and methods for the complete detoxification of fumonisin and fumonisin degradation products are provided. Particularly, nucleotide sequences corresponding to the detoxification enzymes are provided. The sequences find use in preparing expression cassettes for the transformation of a broad variety of host cells and organisms.
摘要:
Compositions and methods for the complete detoxification of fumonisin and fumonisin degradation products are provided. Particularly, nucleotide sequences corresponding to the detoxification enzymes are provided. The sequences find use in preparing expression cassettes for the transformation of a broad variety of host cells and organisms.
摘要:
The invention relates to the genetic manipulation of plants, particularly to the expression of genes involved in oxylipin metabolism in plants. Nucleotide sequences encoding homologues of Old Yellow Enzyme, and inducible promoters and proteins thereof, are provided. The sequences find use in modifying oxylipin metabolism in plants, increasing the resistance of plants to stress, regulating gene expression in plants, and in the production of oxylipins in plants.
摘要:
Compositions and methods for the complete detoxification of fumonisin and fumonisin degradation products are provided. Particularly, nucleotide sequences corresponding to the detoxification enzymes are provided. The sequences find use in preparing expression cassettes for the transformation of a broad variety of host cells and organisms.
摘要:
Compositions and methods for the complete detoxification of fumonisin and fumonisin degradation products are provided. Particularly, nucleotide sequences corresponding to the detoxification enzymes are provided. The sequences find use in preparing expression cassettes for the transformation of a broad variety of host cells and organisms.
摘要:
The invention relates to isolated sunflower nucleic acid sequences encoding a protein having antipathogenic activity, vectors, plant cells, plants and seeds comprising said nucleic acid sequences. The invention further relates to a method of transforming plants for increased resistance against plant pathogens.
摘要:
The methods of the invention provide a means for rapid analysis of gene function in a variety of systems. The invention allows screening of large libraries of nucleotide sequences for involvement in physiological pathways of interest. The methods of the invention also provide an efficient means of identifying and isolating nucleotide sequences that modulate a physiological pathway of interest from a population of nucleotide sequences.
摘要:
The methods of the invention provide a means for rapid analysis of gene function in a variety of systems. The invention allows screening of large libraries of nucleotide sequences for involvement in physiological pathways of interest. The methods of the invention also provide an efficient means of identifying and isolating nucleotide sequences that modulate a physiological pathway of interest from a population of nucleotide sequences.
摘要:
The present invention provides a bacterial microorganism having the ability to degrade or detoxify zearalenone or derivatives or analogs of zearalenone. The present invention also provides a method for the isolation and utilization of a zearalenone-degradation gene encoding a gene product having the ability to degrade or detoxify zearalenone or derivatives or analogs of zearalenone. In another embodiment, the present invention provides for the generation of transformants into which the zearalenone-degradation gene has been introduced, thereby providing the ability to degrade or detoxify zearalenone or derivatives or analogs of zearalenone to said transformants. The present invention further provides a method for detoxification of plants pre- or post-harvest using microbes having the ability to degrade or detoxify zearalenone or derivatives or analogs of zearalenone. The invention also provides a method for detoxification of plants pre- or post-harvest using the zearalenone-degradation gene.