Abstract:
Provided may be a slurry composition for chemical mechanical polishing (CMP) and a CMP method using the same. For example, the slurry composition may include a first polishing inhibitor including at least one of PO43− or HPO42− and a second polishing inhibitor, which may be a C2-C10 hydrocarbon compound having —SO3H or —OSO3H. By using the slurry composition for CMP and a CMP method using the same, increased selectivity to SiN may be obtained.
Abstract:
Disclosed is a method of fabricating a semiconductor device including a multi-gate transistor. The method of fabricating a semiconductor device includes providing a semiconductor device having a number of active patterns which extend in a first direction, are separated by an isolation layer, and covered with a first insulating layer; forming a first groove by etching the isolation layer located between the active patterns adjacent to each other in the first direction; burying the first groove with a passivation layer; forming a second groove exposing at least a portion of both sides of the active patterns by etching the isolation layer located between the active patterns in a second direction intersecting the first direction; removing the passivation layer in the first groove; and forming a gate line filling at least a portion of the second groove and extending in the second direction.
Abstract:
A mold apparatus having at least a pair of molds formed with a cavity, at least one pipe accommodator formed in the molds, at least one heat pipe mounted in the pipe accommodator, a heat-cool source part connected to the heat pipe the heat and cool the heat pipe, and a controller to control the heat-cool source part to selectively heat and cool the heat pipe. Thus a mold apparatus to reduce a molding cycle and improve the quality of a molded product's appearance is provided.
Abstract:
A chemical mechanical polishing slurry includes an additive of a quaternary ammonium compound having a form of {N—(R1R2R3R4)}+X−, in which R1, R2, R3, and R4 are radicals, and X− is an anion derivative including halogen elements. Preferably, the quaternary ammonium compound is one of [(CH3)3NCH2CH2OH]Cl, [(CH3)3NCH2CH2OH]l, [(CH3)3NCH2CH2OH]Br, [(CH3)3NCH2CH2OH]CO3, and mixtures thereof. The slurry may further include a pH control agent formed of a base such as KOH, NH4OH, and (CH3)4NOH, and an acid such as HCl, H2SO4, H3PO4, and HNO3. Also, the pH control agent can include [(CH3)3NCH2CH2OH]OH. The slurry may further include a surfactant such as cetyldimethyl ammonium bromide, cetyldimethyl ammonium bromide, polyethylene oxide, polyethylene alcohol or polyethylene glycol.
Abstract:
A cathode active material, a cathode including the cathode active material, and a lithium battery including the cathode. A lithium manganese phosphate cathode active material having an olivine structure represented by LixMn1-y-zM′yM″zPO4, where 0.6≦x≦1.0, 0
Abstract:
A WLAN distributed/opportunistic scheduling (WDOS) method for acquiring a multi-user diversity gain is disclosed. The WDOS method allows a transmitter (i.e., a transmission user) to observe channel conditions of receivers (i.e., reception users), and commands the transmitter to transmit packets to a specific receiver having a relative good channel condition. The WDOS method uses a modified RTS/CTS exchange method to perform the channel probing. If the transmitter broadcasts the BRTS frame, each receiver transmits a CTS frame after the lapse of its backoff period. According to the reception signal strength distribution, the backoff delay time minimizes the number of CTS collisions irrespective of the number of receivers, reduces an amount of channel probing overheads, and maximizes a multi-user diversity gain. The better the relative channel condition, the lower the backoff delay time.
Abstract:
An molding apparatus includes a core having a recessed part corresponding to a protruding part of a molded article, an ejector pin movably provided in the core to eject the molded article, an ejector sleeve movably provided in the core to push the protruding part of the molded article, and an ejector actuating part to move the ejector pin and the ejector sleeve together to a separation position where the protruding part of the molded article is separated from the recessed portion of the core, to bring the ejector sleeve into a stop position so that the ejector sleeve does not protrude from the core, and to move the ejector pin from the separation position to a removal position where the molded article is spaced apart from the core by a predetermined distance. Accordingly, the molding apparatus is capable of preventing damage caused on an ejector sleeve.
Abstract:
A slurry composition useful for chemical mechanical polishing of the surface of a material layer, e.g., a silicon oxide layer, is disclosed. A first material surface which is exposed to the slurry exhibits hydrophilicity, while a second material layer, e.g., a polysilicon layer, the surface of which is also exposed to the slurry, exhibits hydrophobicity, and accordingly acts as a polishing stopping layer. The slurry composition consists essentially of water, abrasive grains, and a polymer additive having both hydrophilic and hydrophobic functional groups.
Abstract:
A mold apparatus having at least a pair of molds formed with a cavity, at least one pipe accommodator formed in the molds, at least one heat pipe mounted in the pipe accommodator, a heat-cool source part connected to the heat pipe the heat and cool the heat pipe, and a controller to control the heat-cool source part to selectively heat and cool the heat pipe. Thus a mold apparatus to reduce a molding cycle and improve the quality of a molded product's appearance is provided.
Abstract:
A CMP oxide slurry includes an aqueous solution containing abrasive particles and two or more different passivation agents. Preferably, the aqueous solution is made up of deionized water, and the abrasive particles are a metal oxide selected from the group consisting of ceria, silica, alumina, titania, zirconia and germania. Also, a first passivation agent may be an anionic, cationic or nonionic surfactant, and a second passivation agent may be a phthalic acid and its salts. In one example, the first passivation agent is poly-vinyl sulfonic acid, and the second passivation agent is potassium hydrogen phthalate. The slurry exhibits a high oxide to silicon nitride removal selectivity.