摘要:
Provided is an inductor. The inductor includes a first to a fourth conductive terminals formed in one direction within a semiconductor substrate, a first conductive line formed on one side of the semiconductor substrate and electrically connected to the second and third conductive terminals interiorly positioned among the first to fourth conductive terminals, a second conductive line formed on the one side of the semiconductor substrate and electrically connected to the first and fourth conductive terminals exteriorly positioned among the first to fourth conductive terminals, and a third conductive line formed on the other side of the semiconductor substrate and electrically connected to the first and third conductive terminals among the first to fourth conductive terminals.
摘要:
Provided are a compound semiconductor device and a method of manufacturing the same. The semiconductor device includes: a substrate including a first region and a second region; a transistor including first to third conductive impurity layers stacked on the substrate of the first region; and a variable capacitance diode spaced apart from the transistor of the first region and including the first and second conductive impurity layers stacked on the substrate of the second region.
摘要:
Provided is a power amplifier device. The power amplifier device includes: a cutoff unit cutting off a direct current (DC) component of a signal delivered from a signal input terminal; a circuit protecting unit connected to the cutoff unit and stabilizing a signal delivered from the cutoff unit; and an amplification unit connected to the circuit protecting unit and amplifying a signal delivered from the circuit protecting unit, wherein the amplification unit comprises a plurality of transistors connected in parallel to the circuit protecting unit and the circuit protecting unit comprises resistors connected to between bases of the plurality of transistors.
摘要:
Provided is a power amplifier device. The power amplifier device includes: a cutoff unit cutting off a direct current (DC) component of a signal delivered from a signal input terminal; a circuit protecting unit connected to the cutoff unit and stabilizing a signal delivered from the cutoff unit; and an amplification unit connected to the circuit protecting unit and amplifying a signal delivered from the circuit protecting unit, wherein the amplification unit comprises a plurality of transistors connected in parallel to the circuit protecting unit and the circuit protecting unit comprises resistors connected to between bases of the plurality of transistors.
摘要:
Provided is an inductor. The inductor includes a first to a fourth conductive terminals formed in one direction within a semiconductor substrate, a first conductive line formed on one side of the semiconductor substrate and electrically connected to the second and third conductive terminals interiorly positioned among the first to fourth conductive terminals, a second conductive line formed on the one side of the semiconductor substrate and electrically connected to the first and fourth conductive terminals exteriorly positioned among the first to fourth conductive terminals, and a third conductive line formed on the other side of the semiconductor substrate and electrically connected to the first and third conductive terminals among the first to fourth conductive terminals.
摘要:
Disclosed are a field-effect transistor and a manufacturing method thereof. The disclosed field-effect transistor includes: a semiconductor substrate; a source ohmic metal layer formed on one side of the semiconductor substrate; a drain ohmic metal layer formed on another side of the semiconductor substrate; a gate electrode formed between the source ohmic metal layer and the drain ohmic metal layer, on an upper portion of the semiconductor substrate; an insulating film formed on the semiconductor substrate's upper portion including the source ohmic metal layer, the drain ohmic metal layer and the gate electrode; and a plurality of field electrodes formed on an upper portion of the insulating film, wherein the insulating film below the respective field electrodes has different thicknesses.
摘要:
Disclosed are a method of manufacturing a field-effect transistor. The disclosed method includes: providing a semiconductor substrate; forming a source ohmic metal layer on one side of the semiconductor substrate; forming a drain ohmic metal layer on another side of the semiconductor substrate; forming a gate electrode between the source ohmic metal layer and the drain ohmic metal layer, on an upper portion of the semiconductor substrate; forming an insulating film on the semiconductor substrate's upper portion including the source ohmic metal layer, the drain ohmic metal layer and the gate electrode; and forming a plurality of field electrodes on an upper portion of the insulating film, wherein the insulating film below the respective field electrodes has different thicknesses.
摘要:
Provided are a method of manufacturing a normally-off mode high frequency device structure and a method of simultaneously manufacturing a normally-on mode high frequency device structure and a normally-off mode high frequency device structure on a single substrate.
摘要:
Provided are a method of manufacturing a normally-off mode high frequency device structure and a method of simultaneously manufacturing a normally-on mode high frequency device structure and a normally-off mode high frequency device structure on a single substrate.
摘要:
Provided is a method for fabricating a field effect transistor. In the method, an active layer and a capping layer are formed on a substrate. A source electrode and a drain electrode is formed on the capping layer. A dielectric interlayer is formed on the substrate, and resist layers having first and second openings with asymmetrical depths are formed on the dielectric interlayer between the source electrode and the drain electrode. The first opening exposes the dielectric interlayer, and the second opening exposes the lowermost of the resist layers. The dielectric interlayer in the bottom of the first opening and the lowermost resist layer under the second opening are simultaneously removed to expose the capping layer to the first opening and expose the dielectric interlayer to the second opening. The capping layer of the first opening is removed to expose the active layer. A metal layer is deposited on the substrate to simultaneously form a gate electrode and a field plate in the first opening and the second opening. The resist layers are removed to lift off the metal layer on the resist layers.