摘要:
A stereoscopic image display device comprises a frame rate conversion unit that divides 3D input data into left eye image data and right eye image data, inserts reset frame data containing black grayscale data between the left eye image data and the right eye image data, and generates the (n+1)-th frame data to the (n+4)-th frame data containing the left eye image data, the black grayscale data, the right eye image data, respectively, and the black grayscale data, a look-up table that stores local dimming values used to control brightness for the overall local dimming zones to the minimum during the (n+2)-th and (n+4)-th frame periods, and local dimming values used to control brightness for each local dimming zone to target brightness during the (n+1)-th and (n+3)-th frame periods, and a backlight controller that controls light source brightness of the backlight unit for each local dimming zone.
摘要:
A stereoscopic image display device comprises a frame rate conversion unit that divides 3D input data into left eye image data and right eye image data, inserts reset frame data containing black grayscale data between the left eye image data and the right eye image data, and generates the (n+1)-th frame data to the (n+4)-th frame data containing the left eye image data, the black grayscale data, the right eye image data, respectively, and the black grayscale data, a look-up table that stores local dimming values used to control brightness for the overall local dimming zones to the minimum during the (n+2)-th and (n+4)-th frame periods, and local dimming values used to control brightness for each local dimming zone to target brightness during the (n+1)-th and (n+3)-th frame periods, and a backlight controller that controls light source brightness of the backlight unit for each local dimming zone.
摘要:
A stereoscopic image display device comprises a display panel; a panel driving unit configured to address left eye image data in all pixels of the display panel during a data addressing period set in an N-th (where N is a natural number) frame period and adjust voltages of all the pixels of the display panel to a black grayscale voltage during a black grayscale inserting period set in the N-th frame period, address right eye image data in all the pixels of the display panel during a data addressing period set in a (N+1)-th frame period and adjust voltages of all the pixel of the display panel to the black grayscale voltage during a black grayscale inserting period set in the (N+1)-th frame period; and a controller configured to supply the left eye image data, and the right eye image data to the panel driving unit and control operation timings of the panel driving unit.
摘要:
A stereoscopic image display and a method for driving the same are disclosed. The stereoscopic image display includes a display panel that displays a two-dimensional (2D) image data in a 2D mode and display a three-dimensional (3D) image data in a 3D mode, a backlight unit providing light to the display panel, a backlight controller that reduces a duty ratio of the backlight unit in a 3D mode lower than a duty ratio set in the 2D mode, and increases a forward current supplied to light sources of the backlight unit in the 3D mode greater than a forward current set in the 2D mode, and a light source driver driving the light sources of the backlight unit.
摘要:
A stereoscopic image display and a method for driving the same are disclosed. The stereoscopic image display includes a display panel displaying a two-dimensional (2D) image data in a 2D mode and displaying a three-dimensional (3D) image data in a 3D mode, a gamma reference voltage generating circuit that generates first gamma reference voltages and second gamma reference voltages different from the first gamma reference voltages, outputs the first gamma reference voltages in the 2D mode, and outputs the second gamma reference voltages in the 3D mode, and data driver that converts the 2D image data into the first gamma reference voltages in the 2D mode and converts left eye image data and right eye image data into the second gamma reference voltages in the 3D mode.
摘要:
A stereoscopic image display and a method for driving the same are disclosed. The stereoscopic image display includes a display panel that displays a two-dimensional (2D) image data in a 2D mode and display a three-dimensional (3D) image data in a 3D mode, a backlight unit providing light to the display panel, a backlight controller that reduces a duty ratio of the backlight unit in a 3D mode lower than a duty ratio set in the 2D mode, and increases a forward current supplied to light sources of the backlight unit in the 3D mode greater than a forward current set in the 2D mode, and a light source driver driving the light sources of the backlight unit.
摘要:
A stereoscopic image display device comprises a display panel; a panel driving unit configured to address left eye image data in all pixels of the display panel during a data addressing period set in an N-th (where N is a natural number) frame period and adjust voltages of all the pixels of the display panel to a black grayscale voltage during a black grayscale inserting period set in the N-th frame period, address right eye image data in all the pixels of the display panel during a data addressing period set in a (N+1)-th frame period and adjust voltages of all the pixel of the display panel to the black grayscale voltage during a black grayscale inserting period set in the (N+1)-th frame period; and a controller configured to supply the left eye image data, and the right eye image data to the panel driving unit and control operation timings of the panel driving unit.
摘要:
Provided are an apparatus and method for testing call processing performance and conformance of a media gateway controller and a media gateway with respect to a media gateway control (MEGACO) protocol. The method includes generating a predetermined scenario regarding a test of call processing performance of a media gateway controller or a media gateway; selecting a function of the media gateway controller or the media gateway and emulating virtual analog lines between the media gateway controller and the media gateway according to the scenario; and testing the call processing performance of the media gateway controller or the media gateway using the virtual analog lines and the selected media gateway controller or the media gateway. Accordingly, it is possible to effectively test the call processing performance of the media gateway controller or a media gateway without test equipment.
摘要:
Iterative methods for inversion of seismic data to update a physical property model are disclosed. Such methods may comprise iteratively updating the model until a first predetermined resolution is achieved, using full wavefield inversion of the seismic data up to a first frequency threshold and assuming the seismic data is free of attenuation effects; extracting geobodies from the updated model; obtaining a Q model using the geobodies; and updating the physical property model using an inversion process, wherein the Q model is incorporated into the inversion process. These steps may be repeated until a second predetermined resolution of the physical property model is achieved, wherein the first frequency threshold is progressively increased in each repetition. The Q model may be updated with seismic data at all available frequencies to obtain a full-band Q model; and the physical property model may be updated using full-band migration and the full-band Q model.
摘要:
The present invention relates to a technique relating to a method and apparatus for generating, transmitting, and receiving a data frame having a newly proposed format in a wireless communication system. According to the technique, the method for generating a data frame in a wireless communication system comprises the following steps: generating at least one first subframe; generating at least one second subframe; and generating a data frame including the first and second subframes, wherein the first and second subframes include length information of a MAC protocol data unit (MPDU) contained in the first and second subframes, and the length information of the MPDU contained in the second subframe is zero.