摘要:
A method of determining the phase angle of an internal combustion engine camshaft relative to a crankshaft of the engine, which significantly reduces the computational burden compared to conventional methods. The cam and crankshaft position pulses are identified by corresponding clock values, and the cam phase angle relative to the crankshaft is determined by computing a simple ratio of first and second time intervals based on the clock values, and multiplying the ratio by a known angle. One of the time intervals is defined by a time difference between successive crankshaft and camshaft pulses, while the other time interval is defined by a time difference between successive crankshaft pulses. The known angle is the angle of crankshaft rotation between the successive crankshaft pulses. The cam phase angle velocity is obtained by determining a change in cam phase angle, and dividing by the intervening time interval.
摘要:
A method of estimating the volumetric efficiency of an internal combustion engine having independent intake and exhaust cam phase variation, compensates a nominal or base estimate of the volumetric efficiency in two successive stages: an intake stage, and an exhaust stage. The intake stage compensates for the effects of intake cam variation, using the base volumetric efficiency estimate as a starting point; and the exhaust stage compensates for the effects of exhaust cam variation, using the output of the intake stage as a starting point. The volumetric efficiency so compensated is then used to accurately compute the mass intake airflow for engine control purposes.
摘要:
An engine air/fuel control system modulates the flow of fuel delivered to the engine with a modulation signal (100, 144) The feedback variable generated (210-228) from a two-state exhaust gas oxygen sensor (16) corrects the fuel flow (156). During each of a plurality of pre-determined intervals, the fuel flow is biased with a rich offset (342). Amplitude of the modulation signal is corrected by a difference between the feedback variable generated during two successive occurrences of the predetermined interval (346-378).
摘要:
An air/fuel control system having a feedback variable generated by modulating fuel flow into the engine, generating an error signal from a difference between the average of an exhaust gas oxygen sensor output and a reference value correlated with a desired air/fuel ratio, and integrating the error signal. The reference value is periodically offset in both lean and rich air/fuel directions. A biasing signal is generated from an exhaust gas oxygen sensor position downstream of the converter in response to the air/fuel offset. After removing the offset from the reference value, the bias signal is applied thereto for centering engine air/fuel operation within the peak efficiency window of a catalytic converter.
摘要:
A method of improving the operating characteristics of an internal combustion engine equipped with electronic throttle control employs variable cam timing to vary the phasing of the intake valves and/or exhaust valves so as to achieve lower feed gas emissions and improved fuel economy while delivering as closely as possible the desired torque. The method can be implemented using a fuel-lead strategy or an air-lead strategy. Whenever a change is requested in the amount of torque, the method responds by adjusting the amount of fuel flow, the spark timing, the position of the throttle and/or the positions of the intake valves and/or the exhaust valves so as to deliver the desired torque. The method adjusts those operating parameters in a way that improves the ability of the engine to deliver the desired torque, produce less feed gas emissions, idle more stably, and consume less fuel.
摘要:
An air/fuel control system for an engine (28) provides an air/fuel indicating signal linearly related to average engine air/fuel operation from a two-state exhaust gas oxygen sensor (44). Fuel delivered to the engine is modulated with a periodic signal (144). A reference value corresponding to a desired air/fuel ratio is subtracted from a rolling average of the exhaust gas oxygen sensor output to provide an error signal (148-152). A feedback variable (FV) for adjusting the engine air/fuel ratio is generated from a proportional plus integral controller having the error signal as its input (156). In this manner, average engine air/fuel ratio is maintained at the desired air/fuel ratio and the rolling average of the exhaust gas oxygen sensor output provides an air/fuel indicating signal.
摘要:
A system and method for determining valve degradation is presented. According to the method, valve timing can be adjusted in a number of ways to improve the possibility of detecting a degraded valve.
摘要:
An air/fuel control system for an engine (10) provides an air/fuel indicating signal linearly related to average engine air/fuel operation from a two-state exhaust gas oxygen sensor (76). Fuel delivered to the engine is modulated with a periodic or modulation signal (244). The modulation signal is offset in either a fuel increasing or a fuel decreasing direction when the air/fuel indicating signal is respectively saturated at either a lean or a rich value (394-420).
摘要:
An air/fuel control system for an engine (28) provides an air/fuel indicating signal linearly related to average engine air/fuel operation from a two-state exhaust gas oxygen sensor (44). Fuel delivered to the engine is modulated with a periodic signal (144). Adaptive feedback control (steps 200-280) adaptively learns a desired amplitude for the periodic signal to generate the air/fuel indicating signal with desired sensitivity and operating range.