摘要:
3D sensors, systems, and associated methods are provided. In one aspect, for example, a monolithic 3D sensor for detecting infrared and visible light can include a semiconductor substrate having a device surface, at least one visible light photodiode formed at the device surface and at least one 3D photodiode formed at the device surface in proximity to the at least one visible light photodiode. The device can further include a quantum efficiency enhanced infrared light region functionally coupled to the at least one 3D photodiode and positioned to interact with electromagnetic radiation. In one aspect, the quantum efficiency enhanced infrared light region is a textured region located at the device surface.
摘要:
3D sensors, systems, and associated methods are provided. In one aspect, for example, a monolithic 3D sensor for detecting infrared and visible light can include a semiconductor substrate having a device surface, at least one visible light photodiode formed at the device surface and at least one 3D photodiode formed at the device surface in proximity to the at least one visible light photodiode. The device can further include a quantum efficiency enhanced infrared light region functionally coupled to the at least one 3D photodiode and positioned to interact with electromagnetic radiation. In one aspect, the quantum efficiency enhanced infrared light region is a textured region located at the device surface.
摘要:
Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation where the textured region includes surface features sized and positioned to facilitate tuning to a preselected wavelength of light, and a dielectric region positioned between the textured region and the at least one junction. The dielectric region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region. Additionally, the device includes an electrical transfer element coupled to the semiconductor substrate to transfer an electrical signal from the at least one junction.
摘要:
Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and a passivation region positioned between the textured region and the at least one junction. The passivation region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region. Additionally, the device includes an electrical transfer element coupled to the semiconductor substrate to transfer an electrical signal from the at least one junction.
摘要:
Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and a passivation region positioned between the textured region and the at least one junction. The passivation region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region. Additionally, the device includes an electrical transfer element coupled to the semiconductor substrate to transfer an electrical signal from the at least one junction.
摘要:
Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation where the textured region includes surface features sized and positioned to facilitate tuning to a preselected wavelength of light, and a dielectric region positioned between the textured region and the at least one junction. The dielectric region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region. Additionally, the device includes an electrical transfer element coupled to the semiconductor substrate to transfer an electrical signal from the at least one junction.
摘要:
Photosensitive devices and associated methods are provided. In one aspect, for example, a photosensitive imager device can include a semiconductor substrate having multiple doped regions forming at least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and an electrical transfer element coupled to the semiconductor substrate and operable to transfer an electrical signal from the at least one junction. In one aspect, the textured region is operable to facilitate generation of an electrical signal from the detection of infrared electromagnetic radiation. In another aspect, interacting with electromagnetic radiation further includes increasing the semiconductor substrate's effective absorption wavelength as compared to a semiconductor substrate lacking a textured region.
摘要:
Photosensitive devices and associated methods are provided. In one aspect, for example, a frontside-illuminated photosensitive imager devices can include a semiconductor substrate having multiple doped regions forming a least one junction and a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation on an opposite side of the semiconductor substrate from the multiple doped regions. The textured region can include surface features sized and positioned to facilitate tuning to a preselected wavelength of light. The device can also include an electrical transfer element coupled to the semiconductor substrate and operable to transfer an electrical signal from the at least one junction.
摘要:
Photosensitive devices and associated methods are provided. In one aspect, for example, a photosensitive imager device can include a semiconductor substrate having multiple doped regions forming at least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and an electrical transfer element coupled to the semiconductor substrate and operable to transfer an electrical signal from the at least one junction. In one aspect, the textured region is operable to facilitate generation of an electrical signal from the detection of infrared electromagnetic radiation. In another aspect, interacting with electromagnetic radiation further includes increasing the semiconductor substrate's effective absorption wavelength as compared to a semiconductor substrate lacking a textured region.
摘要:
Semiconductor-on-insulator (SOI) devices and associated methods are provided. In one aspect, for example, a method for making a SOI device can include forming a device layer on a front side of a semiconductor layer, bonding a first substrate to the front side of the device layer, processing the semiconductor layer on a back side opposite the device layer to form a processed surface, and bonding a second substrate to the processed surface. In some aspects, the method can further include removing the first substrate from the front side to expose the device layer. In one aspect, forming the device layer can include forming optoelectronic circuitry at the front side of the semiconductor layer.