Abstract:
The disclosure is directed to a system and method of providing illumination for reticle inspection. According to various embodiments of the disclosure, a multiplexing mirror system receives pulses of illumination from a plurality of illumination sources and directs the pulses of illumination along an illumination path to a plurality of field mirror facets. The field mirror facets receive at least a portion of illumination from the illumination path and direct at least a portion of the illumination to a plurality of pupil mirror facets. The pupil mirror facets receive at least a portion of illumination reflected from the field mirror facets and direct the portion of illumination along a delivery path to a reticle for imaging and/or defect inspection.
Abstract:
An extreme ultraviolet (EUM) mask inspection system, comprising a light source to project EUV light along an optical axis, an illumination system to receive the EUV light from the source, the illumination system comprising a spectral purity filter (SPF), the SPF transmits a first portion of the EUV light along the optical axis toward a mask and the SPF comprising a plurality of at least partially reflective elements, said elements reflects a second portion of the EUV light off the optical axis, a projection system adapted to receive the first portion of the EUV light after it has illuminated the mask, a first detector array adapted to receive the image, and a second detector array to receive the second portion of the EUV light. The SPF may comprise one or more multilayer interference-type filters. Alternatively, the SPF comprises a thin film filter disposed on a grazing incidence mirror array.
Abstract:
Spectral Purity Filters, or SPFs, are disclosed. Such SPFs are designed to block out the 1030 nm drive laser and other undesired out of band light in a EUV mask inspection system. Different phase grating configurations for near normal incidence and grazing incidence are provided in the present disclosure and are configured specifically for EUV mask inspection.
Abstract:
Photoelectron emission mapping systems for use with EUV (extreme ultraviolet) mask inspection and lithography systems are described. The mapping systems may be used to provide photoelectron emission maps for EUV photolithography masks and/or EUV mirrors. The systems use EUV photoelectron sources used for mask inspection or photolithography to impinge EUV light on the masks and/or mirrors. The EUV light generates photoelectron on the surfaces of the mask and/or mirrors and the photoelectrons are collected and analyzed by detectors placed away from optical spaces of the EUV chamber.
Abstract:
An extreme ultraviolet (EUM) mask inspection system, comprising a light source to project EUV light along an optical axis, an illumination system to receive the EUV light from the source, the illumination system comprising a spectral purity filter (SPF), the SPF transmits a first portion of the EUV light along the optical axis toward a mask and the SPF comprising a plurality of at least partially reflective elements, said elements reflects a second portion of the EUV light off the optical axis, a projection system adapted to receive the first portion of the EUV light after it has illuminated the mask, a first detector array adapted to receive the image, and a second detector array to receive the second portion of the EUV light. The SPF may comprise one or more multilayer interference-type filters. Alternatively, the SPF comprises a thin film filter disposed on a grazing incidence mirror array.
Abstract:
Photoelectron emission mapping systems for use with EUV (extreme ultraviolet) mask inspection and lithography systems are described. The mapping systems may be used to provide photoelectron emission maps for EUV photolithography masks and/or EUV mirrors. The systems use EUV photoelectron sources used for mask inspection or photolithography to impinge EUV light on the masks and/or mirrors. The EUV light generates photoelectron on the surfaces of the mask and/or mirrors and the photoelectrons are collected and analyzed by detectors placed away from optical spaces of the EUV chamber.
Abstract:
Spectral Purity Filters, or SPFs, are disclosed. Such SPFs are designed to block out the 1030 nm drive laser and other undesired out of band light in a EUV mask inspection system. Different phase grating configurations for near normal incidence and grazing incidence are provided in the present disclosure and are configured specifically for EUV mask inspection.
Abstract:
The disclosure is directed to a system and method of providing illumination for reticle inspection. According to various embodiments of the disclosure, a multiplexing mirror system receives pulses of illumination from a plurality of illumination sources and directs the pulses of illumination along an illumination path to a plurality of field mirror facets. The field mirror facets receive at least a portion of illumination from the illumination path and direct at least a portion of the illumination to a plurality of pupil mirror facets. The pupil mirror facets receive at least a portion of illumination reflected from the field mirror facets and direct the portion of illumination along a delivery path to a reticle for imaging and/or defect inspection.
Abstract:
The present invention is a light homogenizer or light tunnel with highly reflective sides that enable the focusing of EUV illumination. The sides of the homogenizer are cut from a highly polished silicon wafer. The wafer is coated with a reflective coating before the strips are cut from the wafer. The invention also includes a method for flattening the strips and applying a backing to the strips enabling easier manipulation of the strips during assembly and use.