Abstract:
A system (10) configured to facilitate humidification of a pressurized flow of breathable gas delivered to a subject (12) comprises a pressure generator (14), a nebulizer (16), a heater (38), one or more hardware processors (22), and/or other components. The pressure generator is configured to generate a pressurized flow of breathable gas for delivery to an airway (24) within a trachea of the subject. The nebulizer is configured to provide fluid droplets (54) to the breathable gas. The heater is configured to heat a volume of the breathable gas before the droplets are supplied to the breathable gas. The breathable gas received by the subject exhibits a target temperature and humidity level at short distance d from the nebulizer due to one or more of a number of the droplets, an average size of the droplets, a gas flow rate, and/or an amount of heating power.
Abstract:
A ventilation unit is for ventilating an indoor space, and incorporates an air cleaning device and mechanical restrictor for controlling a restriction to a flow resulting from a pressure differential across the unit. There is determination of the inside and outside air pressures in the vicinity of the unit and of air quality parameters inside and outside. The air cleaning device and the mechanical restrictor are controlled in dependence on the determined air pressures and air quality parameters. This provides a fan-less, and hence low-power ventilation unit, which relies on throttling the natural air flow across the unit to provide flow control, and hence enable control of air quality. The air cleaning device may be operated only when the flow is into the inside space, saving power.
Abstract:
The present disclosure describes a system and method for maintaining oxygen purity in portable oxygen concentrators, even with asymmetric generation of oxygen enriched gas volumes from different sieve beds of the concentration system. The present system and method compensate for asymmetric oxygen enriched gas generation using asymmetric delivery of purge volumes. Purge valves are used to deliver the asymmetric purge gas volumes, enables the system to maintain oxygen purity without additional power consumption, even when a portable oxygen concentrator does not include a product tank. The present system and method are configured such that asymmetry in enriched oxygen generation can be monitored and the asymmetric purge gas compensation can be applied independently from other control mechanisms of a portable oxygen concentrator.
Abstract:
The present invention relates to a device (20) for detection of a vital signs related risk score (111) for a bed fall risk of an individual (2), the device (20) comprising a first port (3) for obtaining vital signs data (140) related to a vital sign of the individual (2) and a vital signs processing unit (9) for obtaining and processing the vital signs data (140) to generate a vital signs related risk score (111) indicating the bed fall risk of the individual (2) by detecting at least one risk factor from the vital signs data (140) and computing the vital signs risk score (111) from the at least one risk factor.
Abstract:
Disclosed is an air purification system (10) including an air purification apparatus (100) comprising an air inlet (112); an air outlet (114) for expelling air in a target direction (116) into a region and including an adjustment mechanism (121) arranged to adjust said target direction in response to a target direction adjustment signal from a control system for aiming the air outlet at the face of a person in said region; at least one pollutant removal structure (101) in between the air inlet and the air outlet; and an air displacement apparatus (113) for displacing air from the air inlet to the air outlet through the at least one pollutant removal structure, and a sensor (151, 160, 135) adapted to determine a breathing parameter of the person, wherein the air purification apparatus is configured to expel said air as a function of said breathing parameter. A computer program product for configuring such a control system is also disclosed.
Abstract:
The present disclosure pertains to a system configured to generate oxygen including a compressor configured to intake and pressurize gas, an oxygen separation unit comprising a first sieve bed, a second sieve bed, and an input receiving the stream of gas from an output of the compressor. The oxygen separation unit generates an oxygen flow by separating oxygen from the stream of gas. A membrane module in fluid connection with an output of the oxygen separation unit is configured to purify the oxygen flow generated by the oxygen separation unit. A valve arrangement is configured to direct, periodically, at least some of the oxygen flow from the membrane module through the sieve beds to purge the sieve beds with retentate gas and exhaust such retentate gas. One or more processors control the valve arrangement, so as to control the oxygen flow and purging of the sieve beds.
Abstract:
A display device comprises a display panel (24), a light blocking arrangement for selectively blocking light which is directed to a lateral output direction from the display panel and an array of lenses (27). The display has a privacy mode in which the light blocking arrangement blocks laterally directed light output from the display device and a public mode in which the light blocking arrangement allows light to pass which is directed to a lateral output direction. The light blocking arrangement comprises a stack of layers (80), each layer comprising a pattern of light blocking arrangement portions of two different types (90,92) such that in the stack of layers, the portions align to form light blocking members, each light blocking member being aligned with an respective lens. The repeating pattern of the light blocking members has a pitch which is double the lens pitch. This enables the light blocking arrangement to be manufactured more easily.
Abstract:
The present invention refers to an oxygen separation system (10), comprising a support (12) for accommodating a plurality of autonomous oxygen separation units (14), wherein the support (12) comprises a plurality of fastening positions having fastening means for receiving an oxygen separation unit (14); and a plurality of autonomous oxygen separation units (14) being attached to said support (12), each oxygen separation unit (14) comprising at least one oxygen separation device (28) with an oxygen separation sorbent (30) being capable of separating oxygen from an oxygen comprising gas by sorbing at least one component of the oxygen comprising gas apart from oxygen, and a gas conveying device (44) for guiding a flow of oxygen comprising gas through the oxygen separation device (28). Such an oxygen separation system (10) may have significant improvements against the systems of the prior art, particularly referring to space, weight, energy consumption, variability, flexibility and maintenance behavior. The invention further relates to a method of generating a flow of oxygen enriched gas.
Abstract:
The present invention refers to an oxygen separation device (12, 14) for a pressure swing adsorption system. In order to provide at least one of improved maintenance behavior, longer lifetime and improved energy consumption, the oxygen separation device (12, 14) comprises a gas inlet (18, 22) at a primary side for guiding a flow of oxygen comprising gas into the oxygen separation device (12, 14) and a gas outlet (28, 30) at a secondary side for guiding a flow of oxygen enriched gas out of the oxygen separation device (12, 14), an oxygen separation membrane (78) comprising an oxygen separation sorbent being capable of separating oxygen from an oxygen comprising gas by sorbing at least one component of the oxygen comprising gas apart from oxygen, and a support structure (80) for supporting the oxygen separation membrane (78), wherein the support structure (80) comprises a plurality of support bars (82) being fixed to the oxygen separation membrane (78). The invention further relates to an oxygen separator (10) and to a method of generating an oxygen separation device (12, 14) for a pressure swing adsorption system.
Abstract:
The invention relates to an oxygen separation device (12, 14), comprising a gas inlet (29, 31) at a primary side for guiding a flow of oxygen comprising gas into the oxygen separation device (12, 14) and having a gas outlet (33, 35) at a secondary side for guiding a flow of oxygen enriched gas out of the oxygen separation device (12, 14), at least one oxygen separation area (20, 22) with an oxygen separation sorbent (16, 18) being capable of separating oxygen from an oxygen comprising gas by sorbing at least one component of the oxygen comprising gas apart from oxygen and being contaminatable by a contaminant, and a decontamination area (21, 23) with a decontamination material(17, 19) for decontaminating the oxygen comprising gas from at least one contaminant, wherein the oxygen separation area (20, 22) and the decontamination area (21, 23) are fluidly connected by a spacer (76, 78) comprising at least one diffusion reducing channel (80, 82), wherein the spacer (76, 78) has a value of diffusion reduction rR of rR>1.Such an oxygen separation device (12, 14) allows (10) provides significant advantages with respect to maintenance. The invention further relates to an oxygen separator (10) and to a method of generating oxygen from an oxygen comprising gas.