Abstract:
The invention provides, amongst others for application in a lighting unit, a phosphor having the formula M1−x−y−zZzAaBbCcDdEeN4−nOn:ESxREy (I), with M=selected from the group consisting of Ca, Sr, and Ba; Z=selected from the group consisting of monovalent Na, K, and Rb; A=selected from the group consisting of divalent Mg, Mn, Zn, and Cd; B=selected from the group consisting of trivalent B, Al and Ga; C=selected from the group consisting of tetravalent Si, Ge, Ti, and Hf; D=selected from the group consisting of monovalent Li, and Cu; E=selected for the group consisting of P, V, Nb, and Ta; ES=selected from the group consisting of divalent Eu, Sm and Yb; RE=selected from the group consisting of trivalent Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm; 0≦x≦0.2; 0≦y≦0.2; 0
Abstract translation:本发明除了应用于照明单元中还提供了具有式M1-x-y-zZaAbBCcDdEeN4-nOn:ESxREy(I)的荧光体,其中M =选自Ca,Sr和Ba; Z =选自单价Na,K和Rb; A =选自二价Mg,Mn,Zn和Cd; B =选自三价B,Al和Ga; C =选自四价Si,Ge,Ti和Hf组成的组; D =选自由一价Li和Cu组成的组; E =由P,V,Nb和Ta组成的组选择; ES =选自二价Eu,Sm和Yb; RE =选自三价Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er和Tm组成的组; 0≤x≤0.2; 0≤y≤0.2; 0
Abstract:
The invention provides a lighting device configured to provide white lighting device light, the lighting device comprising (i) a light source, configured to provide blue light source light, and (ii) a luminescent material element, configured to absorb at least part of the blue light source light and to convert into luminescent material light, wherein the luminescent material element comprises a luminescent material which consists for at least 80 wt. % of a M2-2xEu2xSi5-yAlyOyN8-y phosphor, wherein M comprises one or more of Mg, Ca, Sr, Ba, with a molar ratio of (Mg+Ca+Sr)/(Ba)≤0.1, wherein x is in the range of 0.001-0.02, wherein y is in the range of ≤0.2, and wherein the white lighting device light comprises said blue light source light and said luminescent material light.
Abstract:
The invention provides a lighting unit comprising a source of blue light, a source of green light, a first source of red light comprising a first red luminescent material, configured to provide red light with a broad band spectral light distribution, and a second source of red light comprising a second red luminescent material, configured to provide red light with a spectral light distribution comprising one or more red emission lines. Especially, the first red luminescent material comprises (Mg,Ca,Sr)AlSiN3:Eu and/or (Ba,Sr,Ca)2Si5-xAlxOxN8-x:Eu, and the second red luminescent material comprises K2SiF6:Mn.
Abstract:
The invention provides, amongst others for application in a lighting unit, a phosphor selected from the class of M2D2C2-2bBbA2N6:Ln (I) with M=selected from the group consisting of divalent Ca, Sr, and Ba; D=selected from the group consisting of monovalent Li, divalent Mg, Mn, Zn, Cd, and trivalent Al and Ga; C=selected from the group consisting of monovalent Li and Cu; B=selected from the group consisting of divalent Mg, Zn, Mn and Cd; A=selected from the group consisting of tetravalent Si, Ge, Ti, and Hf; Ln=selected from the group consisting of ES and RE; ES=selected from the group consisting of divalent Eu, Sm and Yb; RE=selected from the group consisting of trivalent Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm; and 0≤b≤1.
Abstract:
The invention provides a lighting unit comprising a light source, configured to generate light source light and a luminescent material, configured to convert at least part of the light source light into luminescent material light, wherein the light source comprises a light emitting diode (LED) and wherein the luminescent material comprises a phosphor comprising M2AX6 doped with tetravalent manganese, wherein M comprises monovalent cations, at least comprising potassium and rubidium, wherein A comprises a tetravalent cation, at least comprising silicon, wherein X comprises a monovalent anion, at least comprising fluorine, and wherein M2AX6 has the hexagonal phase.
Abstract:
The invention provides a lighting unit comprising a source of blue light, a source of green light, a first source of red light comprising a first red luminescent material, configured to provide red light with a broad band spectral light distribution, and a second source of red light comprising a second red luminescent material, configured to provide red light with a spectral light distribution comprising one or more red emission lines. Especially, the first red luminescent material comprises (Mg,Ca,Sr)AlSiN3:Eu and/or (Ba,Sr,Ca)2Si5-xAlxOxN8-x:Eu, and the second red luminescent material comprises K2SiF6:Mn.
Abstract translation:本发明提供了一种照明单元,其包括蓝光源,绿光源,包括第一红色发光材料的第一红光源,用于提供具有宽带光谱分布的红光,以及第二源 红光包括第二红色发光材料,其被配置为提供具有包括一个或多个红色发射线的光谱分布的红光。 特别地,第一红色发光材料包含(Mg,Ca,Sr)AlSiN 3:Eu和/或(Ba,Sr,Ca)2 Si 5-x Al x O x N 8-x:Eu,第二红色发光材料包含K 2 SiF 6:Mn。
Abstract:
The invention provides a lighting unit (100) comprising a light source (10), configured to generate light source light (11) and a luminescent material (20), configured to convert at least part of the light source light (11) into luminescent material light (51), wherein the luminescent material (20) comprises a phosphor (40), wherein this phosphor comprises an alkaline earth aluminum nitride based material having a cubic crystal structure with T5 supertetrahedra, wherein the T5 supertetrahedra comprise at least Al and N, and wherein the alkaline earth aluminum nitride based material further comprises a luminescent lanthanide incorporated therein.
Abstract:
The invention provides a light emitting diode device comprising a light emitting diode arranged on a substrate and a wavelength converting element. The wavelength converting element contains as a luminescent material a Mn4+-activated fluoride compound having a garnet-type crystal structure. The Mn4+-activated fluoride compound preferably answers the general formula {A3}[B2-x-yMnxMgy](Li3)F12-dOd, in which formula A stands for at least one element selected from the series consisting of Na+ and K+ and B stands for at least one element selected from the series consisting of Al3+, B3+, Sc3+, Fe3+, Cr3+, Ti4+ and In3+, and in which formula x ranges between 0.02 and 0.2, y ranges between 0.0 (and incl. 0.0) and 0.4 and d ranges between 0 (and incl. 0) and 1. Said compound is most preferably {Na3}[Al2-x-yMnxMgy](Li3)F12-dOd.
Abstract:
The invention provides a lighting device configured to provide white lighting device light, the lighting device comprising (i) a light source, configured to provide blue light source light, and (ii) a luminescent material element, configured to absorb at least part of the blue light source light and to convert into luminescent material light, wherein the luminescent material element comprises a luminescent material which consists for at least 80 wt. % of a M2-2xEu2xSi5-yAlyOyN8-y phosphor, wherein M comprises one or more of Mg, Ca, Sr, Ba, with a molar ratio of (Mg+Ca+Sr)/(Ba)≦0.1, wherein x is in the range of 0.001-0.02, wherein y is in the range of ≦0.2, and wherein the white lighting device light comprises said blue light source light and said luminescent material light.
Abstract:
The invention provides, amongst others for application in a lighting unit, a phosphor selected from the class of M2D2C2-2bBbA2N6:Ln (I) with M=selected from the group consisting of divalent Ca, Sr, and Ba; D=selected from the group consisting of monovalent Li, divalent Mg, Mn, Zn, Cd, and trivalent Al and Ga; C=selected from the group consisting of monovalent Li and Cu; B=selected from the group consisting of divalent Mg, Zn, Mn and Cd; A=selected from the group consisting of tetravalent Si, Ge, Ti, and Hf; Ln=selected from the group consisting of ES and RE; ES=selected from the group consisting of divalent Eu, Sm and Yb; RE=selected from the group consisting of trivalent Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm; and 0≦b≦1.