Abstract:
The present subject matter provides a method of preparing a multicomponent metal-hybrid nanocomposite using co-gasification, in which a multicomponent metal-hybrid nanocomposite can be prepared by a one-step process without using a complicated process including the steps of supporting-drying-calcining-annealing and the like at the time of preparing a conventional alloy catalyst, and provides a multicomponent metal-hybrid nanocomposite prepared by the method. The method is advantageous in that a multicomponent metal-hybrid nanocomposite can be synthesized by a simple process of simultaneously gasifying two kinds of metal precursors, and in that an additional post-treatment process is not required.
Abstract:
Disclosed herein is a method of manufacturing inorganic hollow yarns, such as cermets, oxide-non oxide composites, poorly sinterable non-oxides, and the like, at low costs. The method includes preparing a composition comprising a self-propagating high temperature reactant, a polymer and a dispersant, wet-spinning the composition through a spinneret to form wet-spun yarns, washing and drying the wet-spun yarns to form polymer-self propagating high temperature reactant hollow yarns, and heat-treating the polymer-self propagating high temperature reactant hollow yarns to remove a polymeric component from the polymer-self propagating high temperature reactant hollow yarns while inducing self-propagating high temperature reaction of the self-propagating high temperature reactant to form inorganic hollow yarns. The composition comprises 45˜60 wt % of the self-propagating high temperature reactant, 6˜17 wt % of the polymer, 0.1˜4 wt % of the dispersant, and the balance of an organic solvent.
Abstract:
The present subject matter provides a method of preparing a multicomponent metal-hybrid nanocomposite using co-gasification, in which a multicomponent metal-hybrid nanocomposite can be prepared by a one-step process without using a complicated process including the steps of supporting-drying-calcining-annealing and the like at the time of preparing a conventional alloy catalyst, and provides a multicomponent metal-hybrid nanocomposite prepared by the method. The method is advantageous in that a multicomponent metal-hybrid nanocomposite can be synthesized by a simple process of simultaneously gasifying two kinds of metal precursors, and in that an additional post-treatment process is not required.
Abstract:
The present disclosure relates to a thermal storage material containing a hexanary composition of NaNO3—NaNO2—KNO3—KNO2—Ca(NO3)2—LiNO3 for lowering a melting point of molten salts.
Abstract:
A method for preparing a carbon dioxide absorbent based on natural biomass, and a carbon dioxide absorbent based on natural biomass that is prepared by the method. The method utilizes alkali metal or alkaline earth metal components, such as Ca, Ma and K, inherent to a natural plant biomass material. The method can provide a carbon dioxide absorbent with improved performance in an environmentally friendly manner at greatly reduced cost.
Abstract:
A method for preparing a carbon dioxide absorbent based on natural biomass, and a carbon dioxide absorbent based on natural biomass that is prepared by the method. The method utilizes alkali metal or alkaline earth metal components, such as Ca, Ma and K, inherent to a natural plant biomass material. The method can provide a carbon dioxide absorbent with improved performance in an environmentally friendly manner at greatly reduced cost.
Abstract:
Disclosed herein is a method of manufacturing inorganic hollow yarns, such as cermets, oxide-non oxide composites, poorly sinterable non-oxides, and the like, at low costs. The method includes preparing a composition comprising a self-propagating high temperature reactant, a polymer and a dispersant, wet-spinning the composition through a spinneret to form wet-spun yarns, washing and drying the wet-spun yarns to form polymer-self propagating high temperature reactant hollow yarns, and heat-treating the polymer-self propagating high temperature reactant hollow yarns to remove a polymeric component from the polymer-self propagating high temperature reactant hollow yarns while inducing self-propagating high temperature reaction of the self-propagating high temperature reactant to form inorganic hollow yarns. The composition comprises 45˜60 wt % of the self-propagating high temperature reactant, 6˜17 wt % of the polymer, 0.1˜4 wt % of the dispersant, and the balance of an organic solvent.