Abstract:
Provided is multi-phase interleaving control in a power supply device, the control allowing the pulse widths ΔT of respective phases to overlap one another, so as to be adaptable to wideband pulse power control. In applying dead beat control to the multi-phase interleaving, constant current control is performed using combined current of the respective phase current values, and the pulse widths ΔT(k) is computed under this constant current control, thereby preventing variation of the pulse widths ΔT(k) between the phases, and achieving stable power control. Accordingly, the pulse power control becomes adaptable to wideband. Furthermore, wideband control is possible also in two-level pulse power control that performs control by switching at high frequency between High-level power and Low-level power.
Abstract:
Multi-phase interleaving control in a power supply device is accelerated. In addition, in accelerating the multi-phase interleaving control in the power supply device, acceleration in detecting a feedback signal and stabilization of a control system in a high-frequency band are promoted. Eliminating the need of the feedback signal according to a slow response detector, and using a detection signal obtained by a detector for detecting an AC signal capable of rapid response, thereby accelerating the multi-phase interleaving control in the power supply device. Then, the control system is stabilized, by satisfying a condition where gain is equal to 1 or less in a transfer function of the control system including an LC circuit, and a condition where a phase shift caused by dead time of switching time does not affect the sampling cycle.
Abstract:
A power conversion device according to the present invention comprises a plurality of class-D amplifiers disposed in parallel. An ON/OFF operation of a switching element of a lead leg and a delay leg of each class-D amplifier is carried out by a phase shift control, in which an auxiliary current is supplied to the class-D amplifier on the basis of a voltage difference between output terminals of an upper and lower class-D amplifiers. The auxiliary current supplements the electric current flowing between the drain and the source of the switching element. Generation of a displacement voltage dv/dt on the switching element, and a displacement current di/dt in modulation waves generated by the displacement voltage are prevented, thus preventing erroneous turn-on of the switching element in the OFF state of the other side of the leg.
Abstract:
Provided is multi-phase interleaving control in a power supply device. In power control by the power supply device where the dead beat control is applied to the multi-phase interleaving, combined current of the multi-phase current values is used as control current in the multi-phase control based on the multi-phase interleaving, thereby achieving control independent of the number of the detectors and the control system independent of the number of phases, and further, this control current is used to perform constant current control, so as to prevent overshooting and undershooting. The power supply device has multi-phase interleaving control that performs multi-phase control using a plurality of phase current values, provided with an LC chopper circuit constituting a step-down chopper circuit that operates according to the multi-phase control of multi-phase interleaving, and a controller for performing step response control according to the multi-phase control of the LC chopper circuit.
Abstract:
Provided is multi-phase interleaving control in a power supply device, the control allowing the pulse widths ΔT of respective phases to overlap one another, so as to be adaptable to wideband pulse power control. In applying dead beat control to the multi-phase interleaving, constant current control is performed using combined current of the respective phase current values, and the pulse widths ΔT(k) is computed under this constant current control, thereby preventing variation of the pulse widths ΔT(k) between the phases, and achieving stable power control. Accordingly, the pulse power control becomes adaptable to wideband. Furthermore, wideband control is possible also in two-level pulse power control that performs control by switching at high frequency between High-level power and Low-level power.
Abstract:
A switching module comprising: a GaN-FET mounted on a substrate; a driver circuit connected to a gate electrode of the GaN-FET via a gate resistor; and a driver power supply for supplying a drive voltage to the driver circuit. The driver circuit is configured such that a plurality of logic integrated circuits are connected in parallel.
Abstract:
Multi-phase interleaving control of a power supply device is accelerated. Furthermore, in accelerating the multi-phase interleaving control in the power supply device, detection of feedback signal is accelerated. In the power supply device and a method for controlling the power supply device, output voltage is acquired as an operation result of a discrete time process using an initial value of the output voltage at a predetermined point, and a detection value of capacitance current at each point of the discrete time process. Accordingly, only detection of the initial value is performed when the output voltage being slow in response is acquired, and detection performed in the discrete time process can be accomplished by detection of capacitance current being rapid in response, thus enabling rapid response.
Abstract:
In a configuration of an isolation circuit using a transformer of a high-frequency-isolation gate driver circuit in the frequency band from 1 to 100 MHz, a period for resetting the exciting current is eliminated, generation of self-resonance phenomenon after resetting is cancelled to reduce generation of noise current, and malfunctions of the switching element due to noise is prevented. In driving plural gate circuits by RF signals, exciting current is allowed to pass through a primary coil of a gate driver transformer alternately in both directions continuously all the time, in a configuration for isolating drive input signals by the gate driver transformer. Accordingly, the reset period that is required when the exciting current flows only in one way becomes unnecessary, and thus generation of self-resonance phenomenon after resetting is canceled. Then, generation of noise current caused by the self-resonance phenomenon is reduced.
Abstract:
When RF power is supplied from an RF generator to a load via a power supply unit, (a) the internal impedance of the RF generator is made lower than the characteristic impedance of the power supply unit, and (b) the load-end voltage is increased by selecting the electrical length LE of the power supply unit, which connects between the RF generator and the load to supply RF power, so that the electrical length LE has a predetermined relation with the fundamental wavelength λ of the RF AC. More specifically, the electrical length LE of the power supply unit is selected in such a way that, when the load end, which is the input end of the load, is in an open state, the electrical length LE is (2n−1)·(λ/4)−k·λ≦LE≦(2n−1)·(λ/4)+k·λ (n is an integer, k is {π−2·cos−1(1/K)}/(4π)) with respect to the fundamental wavelength λ of the RF AC.
Abstract:
The switching module has, mounted on a substrate thereof, a MOSFET and a driver circuit for applying drive voltage to a gate electrode of the MOSFET. In the switching module according to the present invention, the driver circuit is electrically connected to the MOSFET via a damping adjustment element and a bonding wire between the gate electrode and the driver circuit.