摘要:
The circuit device has a plurality of cascaded stages. Each cascaded stage includes several partial stages and has at most two capacitors (C.sub.n1, C.sub.nB) and at most seven transistors (T.sub.n1, T.sub.n2, T.sub.n3, T.sub.n4, T.sub.n5, T.sub.n6, T.sub.n7). The circuit device includes a device for controlling the cascaded stages with four periodic clock signals (.PHI..sub.1, .PHI..sub.2, .PHI..sub.3, .sub.101 .sub.4) phase-shifted about 90.degree. relative to each other such that each of the cascaded stages is controlled by a respective assigned one of four predetermined sets of two of the four periodic clock signals and the same one of the four predetermined set repeats every fifth cascaded stage. Each cascaded stage includes an output stage (12, 12') including a bootstrap-capacitor (C.sub.nB) and three transistors (T.sub.n5, T.sub.n6, T.sub.n7) electrically connected to the bootstrap-capacitor (C.sub.nB); and a charging and discharging stage (11) for the bootstrap-capacitor (C.sub.nB). The charging and discharging stage (11) includes at least one transistor (T.sub.n4) connected electrically to the bootstrap capacitor (C.sub.nB). Each cascaded stage can advantageously also include an inverter stage connected to the charging and discharging stage and including two transistors (T.sub.n1, T.sub.n2) and a memory capacitor (C.sub.n1) electrically connected with each other and controlled by an input signal so that so that both transistors (T.sub.n1, T.sub.n2) are never simultaneously conducting.
摘要:
A video processing method and system for generating a foveated video display with sections having different resolutions uses a network channel for communicating video images having video sections of different resolutions, and includes a video transmission system for processing and transmitting the received video images over the network channel. The system assigns a larger portion of the network channel's bandwidth to a video section with higher resolution. Further, the system includes a video receiving system for receiving and seamlessly combining the first and second video sections of different resolutions to form an output video image on a display device, and a control unit for sending one or more video control parameters to the video transmission system to control capturing, transmitting and processing of the video images.
摘要:
A video processing method and system for generating a foveated video display with sections having different resolutions uses a network channel for communicating video images having video sections of different resolutions, and includes a video transmission system for processing and transmitting the received video images over the network channel. The system assigns a larger portion of the network channel's bandwidth to a video section with higher resolution. Further, the system includes a video receiving system for receiving and seamlessly combining the first and second video sections of different resolutions to form an output video image on a display device, and a control unit for sending one or more video control parameters to the video transmission system to control capturing, transmitting and processing of the video images.
摘要:
A video processing method and system for generating a foveated video display with sections having different resolutions uses a network channel for communicating video images having video sections of different resolutions, and includes a video transmission system for processing and transmitting the received video images over the network channel. The system assigns a larger portion of the network channel's bandwidth to a video section with higher resolution. Further, the system includes a video receiving system for receiving and seamlessly combining the first and second video sections of different resolutions to form an output video image on a display device, and a control unit for sending one or more video control parameters to the video transmission system to control capturing, transmitting and processing of the video images.
摘要:
Disclosed is an image display device to secure uniformity of a screen without luminance unevenness by reducing the number of signal lines and enhancing accuracy in voltages to be applied to respective pixels. In an interval after a scan line Gn+2 is set to selection potential until the scan line Gn+2 is set to non-selection potential, a first display signal having first electric potential to be given to a pixel electrode A is supplied to a signal line, whereby the pixel electrode A and a pixel electrode B are provided with the first electric potential. In addition, after the scan line Gn+2 is set to the non-selection potential, a second display signal having second electric potential to be given to the pixel electrode B is supplied to the signal line, whereby the pixel electrode B is provided with the second electric potential. In this event, a variation of compensative potential for offsetting a difference between an electric potential variation corresponding to parasitic capacitance between the pixel electrode A and scan lines Gn+1 and Gn+2, and an electric potential variation corresponding to parasitic capacitance between the pixel electrode B and the scan line Gn+1, is given to the scan lines Gn+1 and Gn+2 for compensation.
摘要:
A video processing method and system for generating a foveated video display with sections having different resolutions uses a network channel for communicating video images having video sections of different resolutions, and includes a video transmission system for processing and transmitting the received video images over the network channel. The system assigns a larger portion of the network channel's bandwidth to a video section with higher resolution. Further, the system includes a video receiving system for receiving and seamlessly combining the first and second video sections of different resolutions to form an output video image on a display device, and a control unit for sending one or more video control parameters to the video transmission system to control capturing, transmitting and processing of the video images.
摘要:
A liquid crystal display includes a first TFT for controlling a supply of a display signal to a pixel electrode, a second TFT connected to the first TFT, and a third TFT connected to a data line. The third TFT controls the supply of a display signal to the pixel electrode. The second and third TFTs are connected to a gate line Gn+1, and the first TFT is connected to a gate line Gn+2.
摘要:
When run on high pixel density monitors, software applications, which are written to be legible at all resolutions benefit greatly from the high pixel density. Other applications, especially those containing resources whose dimensions and placement are described in terms of numbers of pixels (e.g., a bitmap, text), may have reduced legibility. A method is described which facilitates legibility of both classes of software applications when run on high pixel density monitors.