摘要:
This invention provides a resid cracking apparatus comprising a riser, reactor, stripper cum separator with adjustable outlets in flow communication with adsorbent and catalyst regenerators for converting hydrocarbon residues containing higher concentration of conradson carbon content, poisonous metals such as nickel & vanadium and basic nitrogen etc., into lighter and valuable products and a process thereof.
摘要:
This invention provides a resid cracking apparatus comprising a riser, reactor, stripper cum separator with adjustable outlets in flow communication with adsorbent and catalyst regenerators for converting hydrocarbon residues containing higher concentration of conradson carbon content, poisonous metals such as nickel & vanadium and basic nitrogen etc., into lighter and valuable products and a process thereof.
摘要:
A process for preparing bi-functional catalyst for Fluid Catalytic Cracking (FCC), that comprises molecular sieves, modified clay and semi-basic alumina and the catalyst for highly effective cracking of high boiling petroleum feedstock to provide simultaneously, enhanced yields of Liquefied Petroleum Gas (LPG) and reduction of undesirable bottoms.
摘要:
A process for selective catalytic cracking of a petroleum-based feedstock to produce a product having a high yield of liquified petroleum gas (LPG) and light olefins having 3 to 4 carbons includes providing a fluidized bed reactor which is a high velocity riser, continuously circulating fluidized bed reactor; providing a solid acidic catalyst comprised of: from 1 to 6% by wt. of ultra stable Y-zeolite; from 8-25% by wt. of Pentasil zeolite which is shape selective; from 0-8% by wt. of an active material which is bottom selective; from 0-1% by wt. of rare earth constituents; and from 91 to 60% by wt. of nonacidic constituents and binder; charging the fluidized bed reactor with the solid acidic catalyst and the petroleum-based feedstock; and cracking the petroleum-based feedstock in the presence of the solid acidic catalyst in the fluidized bed reactor. The reactor is operated at a Weight Hourly Space Velocity (WHSV) ranging from 40 to 120 hr.sup.-1, a ratio of solid acidic catalyst to petroleum-based feedstock ranging from 15 to 25, a temperature at the top of the high velocity riser ranging from 530.degree. C. to 600.degree. C., recycled riser products ranging from 0 to 40%, a pressure in the fluidized bed reactor ranging from 1.0 to 4.0 kg/cm.sup.2 g, and an amount of steam for dilution and quenching of hydrocarbons ranging from 3 to 50 wt. % of the petroleum-based feedstock. The Pentasil zeolite has a pore size ranging from 5 to 6 .ANG. so that the catalyst is highly selective for LPG and C.sub.4 light olefins with minimum dry gas and coke make, and so that the vanadium tolerance of the catalyst is increased and ranges up to 21,000 PPM. The process produces a LPG yield ranging up to 40 to 65 wt. % of the fresh petroleum-based feedstock, a selectivity for the light olefins of at least 40 wt. %, and a selectivity for the LPG of at least 45 wt.
摘要:
This invention provides a resid cracking apparatus comprising a riser, reactor, stripper cum separator with adjustable outlets in flow communication with adsorbent and catalyst regenerators for converting hydrocarbon residues containing higher concentration of conradson carbon content, poisonous metals such as nickel & vanadium and basic nitrogen etc., into lighter and valuable products and a process thereof.
摘要:
The present invention relates to a process for the conversion of hydrocarbon streams with 95% true boiling point less than 400° C. to very high yield of liquefied petroleum gas in the range of 45-65 wt % of feed and high octane gasoline, the said process comprises catalytic cracking of the hydrocarbons using a solid fluidizable catalyst comprising a medium pore crystalline alumino-silicates with or without Y-zeolite, non crystalline acidic materials or combinations thereof in a fluidized dense bed reactor operating at a temperature range of 400 to 550° C., pressure range of 2 to 20 kg/cm2 (g) and weight hourly space velocity in range of 0.1 to 20 hour−1, wherein the said dense bed reactor is in flow communication to a catalyst stripper and a regenerator for continuous regeneration of the coked catalyst in presence of air and or oxygen containing gases, the catalyst being continuously circulated between the reactor-regenerator system.
摘要:
The present invention provides a process for the upgradation of petroleum residue into useful fractions by subjecting petroleum residue in the presence of a solvent and ferrous sulphate catalyst to a pressure in the range of 10 atm. to 120 atm., temperature in the range of 380-420° C., for a period in the range of 0-120 minutes, in a reactor vessel, in an inert atmosphere. The charge is then cooled to room temperature and the product gas released through scrubbers. The residue is re-heated, if required, for free flow of liquid product. The resulting liquid product is distilled to obtain useful fractions.
摘要:
The present invention relates to a process for the conversion of hydrocarbon streams with 95% true boiling point less than 400° C. to very high yield of liquefied petroleum gas in the range of 45-65 wt % of feed and high octane gasoline, the said process comprises catalytic cracking of the hydrocarbons using a solid fluidizable catalyst comprising a medium pore crystalline alumino-silicates with or without Y-zeolite, non crystalline acidic materials or combinations thereof in a fluidized dense bed reactor operating at a temperature range of 400 to 550° C., pressure range of 2 to 20 kg/cm2(g) and weight hourly space velocity in range of 0.1 to 20 hour−1, wherein the said dense bed reactor is in flow communication to a catalyst stripper and a regenerator for continuous regeneration of the coked catalyst in presence of air and or oxygen containing gases, the catalyst being continuously circulated between the reactor-regenerator system.
摘要翻译:本发明涉及一种将95%真实沸点低于400℃的烃流转化成非常高产率的进料和高辛烷值汽油的45-65重量%的液化石油气的方法, 所述方法包括使用固体可流化催化剂催化裂化烃,所述固体可流化催化剂包含具有或不具有Y-沸石的中孔结晶铝硅酸盐,非结晶酸性物质或其组合,其在400至550℃的温度范围内操作的流化密床反应器 ℃,压力范围为2至20kg / cm 2(g),重时空速为0.1至20小时的范围,其中所述致密的 床反应器与催化剂汽提器和再生器流动连通,用于在存在空气和/或含氧气体的情况下连续再生焦化催化剂,催化剂在反应器 - 再生器系统之间连续循环。
摘要:
A process for converting undesirable olefinic hydrocarbon streams to hydrogen and petrochemical feedstock e.g. light olefins in C.sub.2 -C.sub.4 range and aromatics especially toluene and xylenes, which comprises simultaneous cracking and reforming at olefin rich hydrocarbons using a catalyst consisting of dehydrogenating metal components, shape selective zeolite components and large pore acidic components in different proportions in a circulating fluidized bed reactor-regenerator system having reactor temperature within 450-750.degree. C. and WHSV of 0.1-60 hour.sup.-1.
摘要:
A fluidized catalytic cracking apparatus includes a riser containing a regenerated catalyst and adsorbant, and has a first inlet for introduction of high velocity steam, a second inlet for introduction of a feed stream containing heavy residual fractions with high concentrations of conradson coke, metals including vanadium and nickel, and additional poisons including nitrogen, a third inlet for introduction of an adsorbent, and a fourth inlet disposed above the third inlet means for introduction of a regenerated catalyst, the adsorbent having a particle size which is larger than that of the regenerated catalyst. A stripper is provided into which the riser extends for causing separation of a hydrocarbon fraction from spent catalyst and adsorbent, and a separator is connected to the stripper and has a base, an inlet at the base for introduction of steam in the upward direction so as to provide a transport velocity in the upward direction for the spent catalyst and cause a separation of the particles of the spent catalyst from the adsorbent in use. A regenerator is connected to the separator and has an outlet and is in flow communication with the fourth inlet for introduction of the regenerated catalyst into the riser. A burner is provided for receiving the adsorbent from the separator and for causing a regeneration thereof, the burner having an inlet for introduction of oxygen containing gas and an outlet in flow communication with the third inlet for introduction of the adsorbent into the riser. A lift line is connected between the separator and the regenerator for allowing a flow of the spent catalyst from the separator into the regenerator while leaving the adsorbent within the separator in a fluidized condition the lift line having a plurality of steam inlets disposed at different elevations along its length for introduction of steam to provide said transport velocity.