摘要:
A magnetoresistive head whose operation depends on a magnetoresistive effect is configured using a ferromagnetic tunnel junction (MTJ) film, which is arranged between a lower electrode and an upper electrode. The ferromagnetic tunnel junction film is basically configured using a set of a free layer, a barrier layer and a fixing layer, which are sequentially formed and laminated on the lower electrode. Herein, the ferromagnetic tunnel junction film is designed to avoid electrostatic destruction in manufacture by prescribed measures. For example, the barrier layer is reduced in thickness at a terminal portion as compared with a center portion. Or, the barrier layer has a defect at the terminal portion. In addition, it is possible to provide a conductor in connection with the barrier layer in proximity to its terminal portion. Further, it is possible to attach re-adhesive substance, which is produced by milling for patterning of the ferromagnetic tunnel junction film, to a specific terminal surface of the ferromagnetic tunnel junction film which is opposite to an ABS plane. Those measures provide a bypass allowing overcurrent release between the free layer and fixing layer. Moreover, adjustment milling or plasma oxidation is employed to control an amount of the re-adhesive substance being attached to the terminal surface of the ferromagnetic tunnel junction film. Thus, by adequately optimizing the amount of the re-adhesive substance, it is possible to improve yield in manufacturing the magnetoresistive heads.
摘要:
In a magnetoresistive effect transducer including a pinning layer, a pinned layer, a free layer and a non-magnetic layer inserted between the pinned layer and the free layer, a longitudinal bias layer is connected directly to a part of the free layer to apply a bias magnetic field to the free layer, thus biasing a magnetization direction of the free layer so that the magnetization direction of the free layer coincides with that of the longitudinal bias layer.
摘要:
In a magnetoresistive effect transducer including a pinning layer, a pinned layer, a free layer and a non-magnetic layer inserted between the pinned layer and the free layer, a longitudinal bias layer is connected directly to a part of the free layer to apply a bias magnetic field to the free layer, thus biasing a magnetization direction of the free layer so that the magnetization direction of the free layer coincides with that of the longitudinal bias layer.
摘要:
In a magnetoresistive effect transducer including a pinning layer, a pinned layer, a free layer and a non-magnetic layer inserted between the pinned layer and the free layer, a longitudinal bias layer is connected directly to a part of the free layer to apply a bias magnetic field to the free layer, thus biasing a magnetization direction of the free layer so that the magnetization direction of the free layer coincides with that of the longitudinal bias layer.
摘要:
In a magnetoresistive effect transducer including a pinning layer, a pinned layer, a free layer and a non-magnetic layer inserted between the pinned layer and the free layer, a longitudinal bias layer is connected directly to a part of the free layer to apply a bias magnetic field to the free layer, thus biasing a magnetization direction of the free layer so that the magnetization direction of the free layer coincides with that of the longitudinal bias layer.
摘要:
A magnetoresistance element includes a lower electrode layer, a magnetoresistance effect layer, an upper electrode layer and a lower electrode anti-erosion/flaking layer. The lower electrode anti-erosion/flaking layer, which is formed before a photoresist layer remaining on the patterned lower electrode layer is removed, is formed around the lower electrode layer so that its edge facing the lower electrode layer will be in contact with the edge of the lower electrode layer. By use of the lower electrode anti-erosion/flaking layer, the edge of the lower electrode layer is protected from being exposed to a release agent containing a dissolved photoresist in a photoresist layer removal step (when the photoresist layer remaining on the patterned lower electrode layer is removed), thereby the increase of roughness of the edge of the lower electrode layer due to erosion/flaking of the edge in the photoresist removal step can be avoided, and thereby electrical shorts between the upper electrode layer and the lower electrode layer can be eliminated, and thereby a magnetoresistance element of high sensitivity and high performance can be obtained and manufacturing yield of the magnetoresistance elements can be improved.
摘要:
A magneto-resistive element comprises a first electrode, a magneto-resistive layer formed on the first electrode in which resistance is changed in accordance with magnetic field, and a second electrode layer formed on the magneto-resistive layer. The magneto-resistive layer has a first magnetic layer formed on the first electrode, a non-magnetic layer formed on the first magnetic layer, and a second magnetic layer formed on the non-magnetic layer. The average surface roughness of the first electrode is equal to or smaller than 0.3 nm. Since the first electrode has such the small average surface roughness, the non-magnetic layer formed on the first electrode layer is flattened, thus, current leakage is prevented. The first electrode is made of at least one of Ta, Zr, Ti, Hf, W, Mo, Y, V, Nb, Au, Ag, Pd, and Pt which has strong bond strength. Since the first electrode has strong bond strength, exfoliation of the first electrode from the layers contacting the first electrode does not occur.
摘要:
The present invention provides a magneto-resistance effect (hereinafter, referred to as MR) type composite head. The head includes a reproduction head including an MR element arranged between a first and a second magnetic shield; and a recording head arranged next to the reproduction head so as to use the second magnetic shield as a first magnetic pole film and having a second magnetic pole film opposing to the first magnetic pole via a magnetic gap; the MR element including: a center region including a ferromagnetic tunnel junction magneto-resistance effect film (hereinafter, referred to as a TMR film) having: a first ferromagnetic layer and a second ferromagnetic layer for generating a magneto-resistance effect using the first and the second magnetic shields as electrodes so that a current flows in a an almost vertical direction between the first and the second magnetic shields; and a tunnel barrier layer provided between the first and the second ferromagnetic layer; and an end region arranged to sandwich the center region from both sides for applying a bias magnetic field to the center region.
摘要:
The present invention provides a magnetic tunnel junction device for an external magnetic field sensor. The device comprises a stack of multi-layers, which include a first antiferromagnetic pinning layer, a ferromagnetic free layer, a tunneling barrier layer, a ferromagnetic pinned layer, and a second antiferromagnetic pinning layer. The first pinning layer has a first pinning field, which pins a magnetization of the free layer in a track width direction. The second pinning layer has a second pinning field, which pins a magnetization of the pinned layer in a direction in the plane of the stacked layers of the magnetic tunnel junction, along the applied external magnetic field direction.
摘要:
A magneto-resistance effect (“MR”) type composite head includes a reproduction head with an MR element arranged between a first and a second magnetic shield; and a recording head arranged adjacent to the reproduction head so as to use the second magnetic shield as a first magnetic pole film and having a second magnetic pole film opposing to the first magnetic pole via a magnetic gap; the MR element includes a center region including a ferromagnetic tunnel junction magneto-resistance effect film having a first ferromagnetic layer and a second ferromagnetic layer for generating a magneto-resistance effect using the first and the second magnetic shields as electrodes so that a current flows in an almost vertical direction between the first and the second magnetic shields; a tunnel barrier layer provided between the first and the second ferromagnetic layer; and an end region arranged to sandwich the center region from both sides for /applying a bias magnetic field to the center region.