摘要:
Provided is a method for fabricating a photoelectric conversion device in which current is prevented as much as possible from leaking via an intermediate contact layer separating groove. The method includes: a process of forming a top layer mainly containing amorphous silicon; a process of forming on the top layer an intermediate contact layer electrically and optically connected to the top layer; a process of removing the intermediate contact layer through irradiation with a pulsed laser and forming an intermediate contact layer separating groove that reaches the top layer to separate the intermediate contact layer; and a process of forming, on the intermediate contact layer and in the intermediate contact layer separating groove, a bottom layer that mainly contains microcrystalline silicon and that is electrically and optically connected to the intermediate contact layer. The intermediate contact layer separating groove is terminated in an i-layer of the top layer.
摘要:
Provided is a photoelectric conversion device fabrication method in which current leakage from an intermediate contact layer via an intermediate-contact-layer separating groove is prevented as much as possible. Included are a step of film-forming a top layer having amorphous silicon as a main component; a step of film-forming, on the top layer, an intermediate contact layer electrically and optically connected thereto; a step of separating the intermediate contact layer by removing the intermediate contact layer by irradiating it with a pulsed laser, forming an intermediate-contact-layer separating groove that reaches the top layer; and a step of film-forming, on the intermediate contact layer and inside the intermediate-contact-layer separating groove, a bottom layer electrically and optically connected thereto and having microcrystalline silicon as a main component. A pulsed laser having a pulse width of 10 ps to 750 ps, inclusive, is used as the pulsed laser for separating the intermediate contact layer.
摘要:
Provided is a photoelectric conversion device fabrication method in which current leakage from an intermediate contact layer via an intermediate-contact-layer separating groove is prevented as much as possible. Included are a step of film-forming a top layer having amorphous silicon as a main component; a step of film-forming, on the top layer, an intermediate contact layer electrically and optically connected thereto; a step of separating the intermediate contact layer by removing the intermediate contact layer by irradiating it with a pulsed laser, forming an intermediate-contact-layer separating groove that reaches the top layer; and a step of film-forming, on the intermediate contact layer and inside the intermediate-contact-layer separating groove, a bottom layer electrically and optically connected thereto and having microcrystalline silicon as a main component. A pulsed laser having a pulse width of 10 ps to 750 ps, inclusive, is used as the pulsed laser for separating the intermediate contact layer.
摘要:
Provided is a method for manufacturing a photoelectric-conversion-device capable of controlling the groove depth of a processed groove to a desired value. The method for manufacturing a photoelectric conversion device (10) includes a groove forming step of irradiating an intermediate-contact-layer separating groove (15) constituting a photoelectric conversion device (10) with a picosecond laser and of moving the picosecond laser relative to the intermediate-contact-layer separating groove (93), thereby forming a processed groove (15) in a predetermined scanning direction. In the groove forming step, interference fringes arranged in parallel in one direction are formed in an irradiated area corresponding to a beam diameter of the picosecond laser, and the picosecond laser is relatively moved such that the interference fringes are joined in the scanning direction.
摘要:
Provided is a method for manufacturing a photoelectric-conversion-device capable of controlling the groove depth of a processed groove to a desired value. The method for manufacturing a photoelectric conversion device (10) includes a groove forming step of irradiating an intermediate-contact-layer separating groove (15) constituting a photoelectric conversion device (10) with a picosecond laser and of moving the picosecond laser relative to the intermediate-contact-layer separating groove (93), thereby forming a processed groove (15) in a predetermined scanning direction. In the groove forming step, interference fringes arranged in parallel in one direction are formed in an irradiated area corresponding to a beam diameter of the picosecond laser, and the picosecond laser is relatively moved such that the interference fringes are joined in the scanning direction.
摘要:
A photovoltaic device that can prevent performance degradation caused by electrodeposition generated as a result of moisture penetration. In the photovoltaic device, two or more intermediate insulation portions that electrically insulate solar cell unit cells positioned adjacently in the X-direction are formed on the substrate center side of side insulation portions so as to extend in the Y-direction in a parallel arrangement across the X-direction, a conductive portion that electrically connects solar cell unit cells positioned adjacently in the X-direction is provided in a position partway along each of the intermediate insulation portions, and the solar cell unit cells where the conductive portion is positioned are electrically insulated from a solar cell unit cell positioned adjacently in the X-direction by another of the intermediate insulation portions positioned distant from the conductive portion in the X-direction.
摘要:
A pressure sensitive element having a pair of light reflecting thin films formed through a thin film producing process and composing a Fabry-Perot resonator which is arranged so as to face a light transmitting system, and a diaphragm laminated on the light reflecting thin films, wherein an optical path difference is formed in accordance with an interval of an air gap located between the pairs of light reflecting thin films, while the interval of the air gap changes by the deformation of the diaphragm.
摘要:
A moisture sensitive material prepared by cross-linking cellulose acetate butyrate with at least one compound selected from the group consisting of compounds containing two or more isocyanate groups; copmpounds containing two or more epoxy groups; compounds containing two or more carboxyl groups; and acid anhydrides of carboxylic acids.
摘要:
A moisture-sensitive device comprising a substrate such as silicon substrate, a pair of belt-like heating elements extending over recesses formed in the substrate, the heating elements being composed of a resistive film of platinum or nickel and a heat-resistant insulating film covering the resistive film in which one of the heating elements acts as a detector element and the other as a reference element, which device can exactly determine an absolute humidity irrespective of sudden changes of temperature.
摘要:
A sensor having a pair of sensor units, one of which is a detecting sensor unit and the other of which is a reference sensor unit, wherein each of the units comprises a substrate with a hollow portion, a thin insulating layer with a bridge, cantilever or diaphragm shape disposed on the substrate, a sensitive film disposed on the bridge, cantilever or diaphragm portion of the thin insulating layer, and a pair of electrodes being in contact with the sensitive film, the sensitive film section of the detecting sensor unit being exposed to an atmosphere to be measured so that the electrical resistance of the sensitive film changes with a variation in the physical quantity of the atmosphere to be detected, and the sensitive film section of the reference sensor unit being sealed within a shielding container so that the electrical resistance of the sensitive film is not influenced by a variation in the physical quantity of the atmosphere outside of the container, whereby the absolute physical quantity of the atmosphere to be detected is determined by the output power of the sensor based on a difference between the electrical resistance of the detecting sensor unit and the electrical resistance of the reference sensor unit.