摘要:
A semiconductor memory includes a memory cell array having a plurality of bit lines and a plurality of word lines arranged intersecting with the bit lines. A plurality of memory cells are arranged at intersections of the bit lines and the word lines, respectively. Word line selecting circuitry selects one of the word lines responsive to a row address and reads out to each of the bit lines information stored in the memory cell associated with the selected word line. A plurality of sense amplifiers are associated with corresponding rows of the memory for detecting and amplifying the information stored in respective memory cells. A first column selector circuit selects the sense amplifiers corresponding to a column address when the column address is applied and reads information held in the sense amplifier. Blocks are formed by dividing the memory cell array into groups of bit lines, each of the groups comprising a predetermined number of bit lines with block information transferred simultaneously from corresponding ones of the groups of bit lines of a selected block when the column address corresponding to the selected block is applied. Data registers hold information of an associated block. A second column selector reads data corresponding to the column address from the data register when the column address is applied.
摘要:
A cache DRAM (100) includes a DRAM memory array (11) accessed by a row address signal and a column address signal, an SRAM memory array (21) accessed by the column address signal, and an ECC circuit (30). The DRAM memory array (11) is divided into a plurality of blocks (B1 to B64), each including a plurality of columns. The SRAM memory array (21) includes 4 ways (W1 to W4). In determining a cache hit/cache miss, a column address signal is inputted. Consequently, the SRAM memory array (21) is accessed and data are read from each of the ways. When a cache hit occurs, one way is selected in response to an externally applied way address signal, and data from that way are outputted. When a cache miss occurs, the column address signal is latched and the row address signal is applied. The DRAM array (11) is accessed in accordance with the row address signal and the latched column address signal.
摘要:
A semiconductor memory device with a built-in cache memory comprises a memory cell array (1). The memory cell array (1) is divided into a plurality of blocks (B1 to B16). Each block is divided into a plurality of sub blocks each having a plurality of columns. At the time of a cache hit, block address signals (B0, B1) and a column address signal (CA) are simultaneously applied. Any of the plurality of blocks (B1 to B16) is selected in response to the block address signals (B0, B1). At the same time, any of the plurality of registers (16a) corresponding to the selected block is selected in response to the column address signal (CA). The data stored in the register (16a) is thereby read out at a high speed
摘要:
A DRAM for use in a simple cache memory system comprises a memory cell array divided into a plurality of blocks, a plurality of data registers provided corresponding to the respective blocks of the array for latching memory cell data of the corresponding blocks, and a selector responsive to a row address strobe signal for selecting access to either the data registers or the memory cell array. Upon cache hit, the row address strobe signal is inactivated to cause the selector to select the access to the data registers. Upon cache miss, the row address strobe signal is activated to cause the selector to select the access to the memory cell array.
摘要:
Drains of first and second transistors are connected to a low level line of an internal circuitry such as a sense amplifier related to determination of a potential in a memory cell. The first transistor has its gate diode-connected to a sense drive line and its source grounded. The second transistor receives at its gate an internally generated signal, and its source is grounded. In the standby state, the potential of the sense drive line is set higher than low level of said word lines by the threshold voltage Vthn of the first transistor and used as dummy GND potential Vss′, and in the active state, the second transistor is rendered conductive so as to prevent floating of the sense drive line from the dummy GND potential Vss′.
摘要:
Column address A0-A11 is once predecoded by a first predecoder PD1, a second predecoder PD2, and a CDE buffer CDB and then applied to a column decoder CD. Column decoder CD selectively drives one of a plurality of column selecting lines CSL on the basis of the applied predecoded signals. This causes corresponding bit lines in respective memory cell arrays MCA1-MCA4 to be simultaneously selected. Column decoder CD includes a plurality of column drivers corresponding to the plurality of column selecting lines, and the column drivers are divided into a plurality of groups. The predecoded signals applied from second predecoder PD2 and CDE buffer CDB to column decoder CD are generated independently for respective groups, and signal lines for them are also distributed to respective groups. This causes the length of wiring of each predecoded signal line to be shortened.
摘要:
Drains of first and second transistors are connected to a low level line of an internal circuitry such as a sense amplifier related to determination of a potential in a memory cell. The first transistor has its gate diode-connected to a sense drive line and its source grounded. The second transistor receives at its gate an internally generated signal, and its source is grounded. In the standby state, the potential of the sense drive line is set higher than low level of said word lines by the threshold voltage Vthn of the first transistor and used as dummy GND potential Vss′, and in the active state, the second transistor is rendered conductive so as to prevent floating of the sense drive line from the dummy GND potential Vss′.
摘要:
Drains of first and second transistors are connected to a low level line of an internal circuitry such as a sense amplifier related to determination of a potential in a memory cell. The first transistor has its gate diode-connected to a sense drive line and its source grounded. The second transistor receives at its gate an internally generated signal, and its source is grounded. In the standby state, the potential of the sense drive line is set higher than low level of said word lines by the threshold voltage Vthn of the first transistor and used as dummy GND potential Vss′, and in the active state, the second transistor is rendered conductive so as to prevent floating of the sense drive line from the dummy GND potential Vss′.
摘要:
Drains of first and second transistors are connected to a low level line of an internal circuitry such as a sense amplifier related to determination of a potential in a memory cell. The first transistor has its gate diode-connected to a sense drive line and its source grounded. The second transistor receives at its gate an internally generated signal, and its source is grounded. In the standby state, the potential of the sense drive line is set higher than low level of said word lines by the threshold voltage Vthn of the first transistor and used as dummy GND potential Vss', and in the active state, the second transistor is rendered conductive so as to prevent floating of the sense drive line from the dummy GND potential Vss'.
摘要:
Drains of first and second transistors are connected to a low level line of an internal circuitry such as a sense amplifier related to determination of a potential in a memory cell. The first transistor has its gate diode-connected to a sense drive line and its source grounded. The second transistor receives at its gate an internally generated signal, and its source is grounded. In the standby state, the potential of the sense drive line is set higher than low level of said word lines by the threshold voltage Vthn of the first transistor and used as dummy GND potential Vss', and in the active state, the second transistor is rendered conductive so as to prevent floating of the sense drive line from the dummy GND potential Vss'.