摘要:
A single cell for a fuel cell in which an air electrode or a fuel electrode includes at least two layers. The air electrode includes an adhering cathode layer formed on one surface of the solid electrolyte layer and configured to show a function to allow the air electrode and the solid electrolyte layer to adhere electrically and mechanically to each other, and an electricity collecting cathode layer formed on the adhering cathode layer and configured to show an electricity collecting function of the air electrode. Alternatively, the fuel electrode includes an adhering anode layer formed on the other surface of the solid electrolyte layer and configured to show a function to allow the fuel electrode and the solid electrolyte layer to adhere electrically and mechanically to each other, and an electricity collecting anode layer formed on the adhering anode layer and configured to show an electricity collecting function.
摘要:
A cell plate structure for a solid oxide electrolyte type fuel cell is provided with a lower electrode layer, an upper electrode layer provided in opposition to the lower electrode layer, a solid electrolyte layer provided between the lower electrode layer and the upper electrode layer, and an area provided in at least one of the lower electrode layer and the upper electrode layer. The area has a portion which is formed by removing a substance, contained in the at least one of the lower electrode layer and the upper electrode layer during formation thereof, after the at least one of the lower electrode layer and the upper electrode layer has been formed. Such a fuel cell plate structure can be applied to a solid electrolyte fuel cell representatively by being disposed between a pair of separators that have gas flow passages supplying the lower electrode layer and the upper electrode layer with gasses, respectively.
摘要:
A solid electrolyte fuel cell plate structure includes a cell element layer composed of a solid electrolyte, an air electrode layer and a fuel electrode layer, a porous base body supporting the cell element layer, and a gas-impermeable member having electric conductivity. The cell element layer is arranged such that the solid electrolyte layer is sandwiched between the air electrode layer and the fuel electrode layer, with the air electrode layer or the fuel electrode layer being joined to the porous base body. The gas-impermeable member is associated with the solid electrolyte layer to allow gas internally passing through the porous base body to be separated from gas flowing outside the porous base body. Such a cell plate structure can be employed in a solid electrolyte fuel cell stack, which in turn can be employed in a solid electrolyte fuel cell electric power generation unit.
摘要:
A solid electrolyte fuel cell plate structure includes a cell element layer composed of a solid electrolyte, an air electrode layer and a fuel electrode layer, a porous base body supporting the cell element layer, and a gas-impermeable member having electric conductivity. The cell element layer is arranged such that the solid electrolyte layer is sandwiched between the air electrode layer and the fuel electrode layer, with the air electrode layer or the fuel electrode layer being joined to the porous base body. The gas-impermeable member is associated with the solid electrolyte layer to allow gas internally passing through the porous base body to be separated from gas flowing outside the porous base body. Such a cell plate structure can be employed in a solid electrolyte fuel cell stack, which in turn can be employed in a solid electrolyte fuel cell electric power generation unit.
摘要:
A cell plate structure for a fuel cell is provided with a porous substrate, a lower electrode layer formed on the porous substrate, an upper electrode layer opposed to the lower electrode layer, a solid electrolyte layer having a layer element placed between the lower electrode layer and the upper electrode layer and composed of a plurality of divided electrolyte regions, a gas impermeable layer correspondingly covering an area where the solid electrolyte layer is absent on the porous substrate or on the lower electrode layer. The gas impermeable layer separates gas passing inside the porous substrate and gas passing outside the porous substrate. Such a cell plate structure is suited for use in a solid electrolyte type fuel cell.
摘要:
An SOFC is provided with an oxidizing electrode layer, a reducing electrode layer opposite to the oxidizing electrode layer, a solid electrolyte layer between the oxidizing electrode layer and the reducing electrode layer, and an alternating laminated structural section between the oxidizing electrode layer and the solid electrolyte layer or between the reducing electrode layer and the solid electrolyte layer. The alternating laminated structural section has a first thin film layer including a material of corresponding one of the electrode layers and a second thin film layer having a phase including the material of the corresponding one of the electrode layers and that of the solid electrolyte layer. The first thin film layer and the second thin film layer are alternately laminated.
摘要:
A unit cell for a solid electrolyte type fuel cell is provided with a fuel electrode, an air electrode making a pair with the fuel electrode, a solid electrolyte interposed between the fuel electrode and the air electrode, a porous metallic base body disposed on at lease one of a surface of the fuel electrode on the far side from the solid electrolyte and a surface of the air electrode on the far side from the solid electrolyte such that the fuel electrode, the electrolyte, and a plurality of concave portions formed in the porous metallic base body so as to extend, in a laminating direction in which the fuel electrode, the electrolyte, the air electrode and the porous metallic base body are laminated, from a surface of the porous metallic base body.
摘要:
A single cell for a fuel cell in which an air electrode or a fuel electrode includes at least two layers. The air electrode includes an adhering cathode layer formed on one surface of the solid electrolyte layer and configured to show a function to allow the air electrode and the solid electrolyte layer to adhere electrically and mechanically to each other, and an electricity collecting cathode layer formed on the adhering cathode layer and configured to show an electricity collecting function of the air electrode. Alternatively, the fuel electrode includes an adhering anode layer formed on the other surface of the solid electrolyte layer and configured to show a function to allow the fuel electrode and the solid electrolyte layer to adhere electrically and mechanically to each other, and an electricity collecting anode layer formed on the adhering anode layer and configured to show an electricity collecting function.
摘要:
A fuel cell of the present invention includes a fuel cell stack (1) for being formed by stacking a plurality of cell plates (2) having a flat shape, the cell plates (2) being configured by arranging a plurality of cells, the cell having an electrolyte layer (2a), a fuel electrode layer (2b) and an air electrode layer (2c). A combustion heater plate (3) includes a porous combustion plate (3a) and a gas non-pass layer (3b) covering a surface of the porous combustion plate (3a). The combustion heater plate (3) is disposed between the cell plates (2).
摘要:
A solid electrolyte fuel cell plate structure includes a cell element layer composed of a solid electrolyte, an air electrode layer and a fuel electrode layer, a porous base body supporting the cell element layer, and a gas-impermeable member having electric conductivity. The cell element layer is arranged such that the solid electrolyte layer is sandwiched between the air electrode layer and the fuel electrode layer, with the air electrode layer or the fuel electrode layer being joined to the porous base body. The gas-impermeable member is associated with the solid electrolyte layer to allow gas internally passing through the porous base body to be separated from gas flowing outside the porous base body. Such a cell plate structure can be employed in a solid electrolyte fuel cell stack, which in turn can be employed in a solid electrolyte fuel cell electric power generation unit.