摘要:
In a manufacturing process of an image forming apparatus (electron beam device) using electron emission elements, particularly, surface conduction type electron emission elements, wirings on an electron source substrate on which the wirings and element electrodes are formed are opposite to electrodes for a face plate, and a given voltage is applied between the wirings and the electrodes to thereby generate a discharge phenomenon in advance, thus removing a protrusion or the like. In this way, when an electric field applying process is conducted on the electron source substrate, a factor such as a protrusion in an electron source which induces a discharge phenomenon in driving an electron beam device represented by an image forming apparatus is removed, thus realizing an image forming apparatus excellent in display characteristic with no defective pixel even in image display for a long period of time.
摘要:
When high luminance is obtained by increasing an anode voltage in an image-forming apparatus constructed by anode and cathode substrates, a surface discharge (flash over) is generated between anode electrodes at a generating time of an abnormal discharge and an anode is broken. Therefore, as shown in FIG. 3B, the electric potential of an anode electrode on an anode substrate (51) is set to a uniform electric potential V1 by a first power source (53). Thereafter, the first power source (53) is separated from the anode electrode. Subsequently, the electric potential of one of the anode electrodes arranged in proximity to each other through an insulating face is set to an electric potential V2 by a second power sourced (54) to apply a voltage to a cut-in portion (52) (see FIG. 3C). Thus, a voltage Vc equal to or greater than an electric potential difference Ve generated at the generating time of the abnormal discharge is applied to the cut-in portion (52). Thus, the generation of a surface discharge (flash over) in the anode substrate can be prevented at the generating time of the abnormal discharge.
摘要:
An image forming apparatus includes a cathode substrate on which an electron emitting device is disposed, and an anode substrate disposed opposite to the cathode substrate. The anode substrate includes an anode electrode including a plurality of conductive films connected in series and arranged to form gaps between neighboring films.
摘要:
There are here disclosed an electron-emitting device, comprising a pair of conductors arranged on a substrate so as to face each other, and a pair of deposited films containing carbon as a main component which are connected to the pair of conductors respectively and which ate arranged putting a gap therebetween, wherein silver is contained in a ratio of 5 mol % to 10 mol % with respect to carbon in the deposited film, an electron source comprising the plurality of electron-emitting devices arranged on a substrate and a wire connected to the electron-emitting devices and an image-forming apparatus comprising the electron source and an image-forming member which performs image formation by the collision of electrons emitted from the electron source.
摘要:
An electron-emitting device includes, a pair of electroconductors disposed on a substrate so as to face each other, and a pair of deposit films connected to the pair of electroconductors, respectively, disposed with a gap therebetween and mainly containing carbon. Lead is contained in the deposit films in a rate of from 1 mol % to 5 mol %% with respect to carbon.
摘要:
Disclosed is an electron-emitting device constructed by a pair of electroconductors which are disposed so as to be opposite to each other on a substrate and a pair of deposited films which are arranged so as to be connected to the pair of electroconductors, which are disposed so as to sandwich a gap, and which contain carbon as a main component. In each of the deposited films, phosphorus is contained in a range of 5 mol percent to 15 mol percent with respect to carbon.
摘要:
An electron-emitting device is equipped with a pair of first electroconductive members arranged on a substrate with an interval between them, wherein the interval becomes narrower at an upper position distant from a surface of the substrate than at a position on the surface, and a peak of one of the pair of the first electroconductive members is higher than a peak of the other of the pair of the first electroconductive members, and further an electron scattering surface forming film including an element having an atomic number larger than those of elements constituting the first electroconductive members as a principal component is provided on a surface of the one of the first electroconductive members.
摘要:
Provided is a manufacturing method capable of manufacturing an electron-emitting device in which a variation in device current at the time of manufacturing is suppressed and thus uniformity thereof is high. The electron-emitting device includes a substrate, a first conductor, and a second conductor. The substrate is composed of: a member which contains silicon oxide as a main ingredient, Na2O, and K2O and in which a molar ratio of K2O to Na2O is 0.5 to 2.0; and a film which contains silicon oxide as a main component and is stacked on the member. The first conductor and the second conductor are located on the substrate. In a forming step and/or an activation step, a quiescent period (interval) of a pulse voltage applying repeatedly applied between the first conductor and the second conductor is set equal to or longer than 10 msec.
摘要:
In an electron-emitting device having a pair of electroconductors arranged on a substrate at an interval, a top of one electroconductor is higher than that of the other electroconductor and a groove extending from the interval region toward a position under a region where the one electroconductor is come into contact with the substrate is formed on the substrate. Deterioration of the electron-emitting device due to collision of charged particles is suppressed by the asymmetrical electron-emitting region, electron-emitting efficiency is improved, and a long life is realized.
摘要:
By applying a drive voltage Vf [V] between first and second conductive films, when electrons are emitted by the first conductive film, an equipotential line of 0.5 Vf [V] is inclined toward the first conductive film, rather than toward the second conductive film, in the vicinity of the electron emitting portion of the first conductive film, in a cross section extending across the electron emitting portion and the portion of the second conductive film located nearest the electron emitting portion. The present invention improves electron emission efficiency.