摘要:
In a vehicle motion control system based on a target yaw rate scheme, a brake force computing unit brakes an outer front wheel in a controlled manner when a sign of the yaw rate has changed and the yaw rate increment has become equal to or greater than a threshold value after a counter steer action has been detected and the vehicle body slip angle has become equal to or greater than a threshold value. Thus, suppose that a vehicle travels a winding road and a counter steer action is taken. If the vehicle body slip angle and actual yaw rate increment exceed threshold values, the outer front wheel is braked. Therefore, even when the vehicle body slip angle reaches a maximum value and an attempt is made to reduce it again by a counter steer action in a similar manner as a swinging pendulum, because the increases in the yaw rate and actual yaw rate increment are predicted and monitored before the vehicle body slip angle reaches its maximum value, the vehicle is enabled to travel in a stable fashion.
摘要:
A rotational speed V1 of a left front wheel T1, a rotational speed V2 of a right front wheel T2, a rotational speed V3 of a left rear wheel T3, and a rotational speed V4 of a right rear wheel T4 are detected by rotational speed sensors S1-S4, respectively. A front-wheel yaw rate γF arising due to a rotational speed difference between the front wheels T1, T2 and a rear-wheel yaw rate γR arising due to a rotational speed difference between the rear wheels T3, T4 are monitored. When a significant disparity between the both rotational speed differences is observed, it is determined that tire inflation pressure of any of the wheels T1-T4 has decreased. Upon detection, correction is made to an apparent yaw rate that would be observed in the properly inflated wheel as a result of steering for correction by a driver, thereby improving detection accuracy of underinflation of the tires.
摘要:
A four-wheel vehicle is equipped with rotational speed sensors S1-S4 that detect a rotational speed V1 of a left front wheel T1, a rotational speed V2 of a right front wheel T2, a rotational speed V3 of a left rear wheel T3 and a rotational speed V4 of a right rear wheel T4, respectively, and a yaw rate sensor S&ggr; that detects a yaw rate of the vehicle. An underinflation detector 1 includes a controller 2 that calculates a front-wheel yaw rate &ggr;F derived from a difference in rotational speed between the front wheels T1, T2, a rear-wheel yaw rate &ggr;R derived from a difference in rotational speed between the rear wheels T3, T4, and deviations of the yaw rates &ggr;F, &ggr;R from an actually measured value output from the yaw rate sensor S&ggr;. A rate of change of the deviation with respect to change of vehicle speed is determined to thereby detect insufficiency of inflation pressure of tires with high reliability. Utilizing this underinflation detector 1, the outputs of the yaw rate sensor S&ggr; can be corrected.
摘要:
In a system for computing a road surface frictional coefficient for controlling a motion of a vehicle, the road surface frictional coefficient is estimated according to the deviation of the estimated vehicle body fore-and-aft/lateral acceleration from the actually detected vehicle body fore-and-aft/lateral acceleration, instead of estimating it directly from the tire slip ratio so that the road surface frictional coefficient is prevented from being estimated substantially higher than it actually is. In particular, by judging a sudden change in the road surface frictional coefficient only when a change in the road surface frictional coefficient, in particular an increase in the frictional coefficient, has persisted for more than a prescribed time period, an error in the estimation of the road surface frictional coefficient can be minimized, and a favorable vehicle motion control based on the estimated road surface frictional coefficient can be ensured under all conditions.
摘要:
In a traction control system, an initial engine torque for a traction control is selected from the following engine torques: an engine torque calculated from a throttle opening degree and an engine revolution-number; a required engine torque calculated from a total acceleration and a vehicle speed; and an engine torque corresponding to a road surface of an extremely low friction coefficient, depending upon a slipping state determined by comparing a driven wheel speed with slip reference values. When the driven wheel speed repeatedly exceeds the slip reference value, it is determined that a hunting has been generated, and the engine torque corresponding to the road surface of the extremely low friction coefficient is selected, and the engine torque is largely reduced. Thus, when the friction coefficient of the road surface is low, the driven wheel speed is prevented from hunting.
摘要:
A method for determining the fully-closed state of a subsidiary throttle valve. If a stable state judging circuit judges that there is no outside influence exerted on the operational state of the engine (a state in which the vehicle is stopped and the engine is in an idling state) even if the subsidiary throttle valve is fully closed, a valve closing circuit closes the subsidiary throttle valve and a fully-closed state determination is carried out. If the opening degree of the subsidiary throttle valve or the engine revolution number is largely varied during the determination process of the fully-closed state determination circuit, a valve-closing inhibiting circuit inhibits the closing of the subsidiary throttle valve to discontinue the determination. Even if all of the conditions for determination are satisfied again, the closing of the subsidiary throttle valve and the restarting of determination by the fully-closed state determination circuit are inhibited until the comparator circuit judges that the vehicle starts traveling and vehicle speed exceeds a reference value.
摘要:
In a traction control device in which an initial control torque of an engine is determined in accordance with an acceleration of the vehicle, when an excessive slipping of driven wheels is detected, a time taken for proceeding of the excessive slipping of the driven wheels from a large slip state to a small slip state is counted by a timer. If such time is smaller than a reference time and a gear ratio of the vehicle is of a first gear shift to provide a low vehicle speed, it is decided that the vehicle is traveling on an upward sloping road, and a lower limit value for defining the initial control torque of the engine determined in an initial control torque calculating means is corrected into an increased value in an initial torque correcting means. This prevents the initial control torque of the engine from being excessively reduced at the start of a traction control. By this construction, it is possible to prevent an initial control torque from being excessively reduced due to a misjudgment of a friction coefficient of a surface of an upward or downward sloping road to insure an acceleratability of a vehicle.
摘要:
DNAs, the salts thereof, the mixtures of DNA and RNA in which the DNA is mostly contained, and the mixtures of the salt of DNA and the salt of RNA in which the salt of DNA is mostly contained are used as active ingredients for pharmaceutical preparations for digestive ulcer, for example, DNA and RNA being obtained from BCG.
摘要:
A traction control system for a vehicle, which, during normal driving of the vehicle, if a driven wheel speed becomes less than a deceleration-control starting reference value which is set lower than a vehicle speed, a feed-back control of an opening degree of a throttle valve is started so as to converge the driven wheel speed into a target driven wheel speed. If a downshifting is conducted, the feed-back control of the throttle valve opening degree is feed-back controlled by using, in place of the driven wheel speed, a pseudo driven wheel speed calculated based on the number of revolutions of an engine and a gear position. With this arrangement, it is possible to open the throttle valve at an earlier stage to increase a driven wheel torque, and to avoid a deceleration slip at the time of downshifting at a high speed.