摘要:
A control valve is used for a variable displacement compressor installed in a refrigerant circuit of a vehicle air conditioner. The control valve has a valve housing. A valve chamber is defined in the valve housing. A valve body is accommodated in the valve chamber. A pressure sensing chamber is defined in the valve housing. A pressure sensing member separates the pressure sensing chamber into a first pressure chamber and a second pressure chamber. The pressure at a first location in the refrigerant circuit is applied to the first pressure chamber. The pressure at a second location in the refrigerant circuit, which is downstream of the first location, is applied to the second pressure chamber. The pressure sensing member moves the valve body in accordance with the pressure difference between the first pressure chamber and the second pressure chamber such that the displacement of the compressor is varied to counter changes of the pressure difference. At least one of the first pressure chamber and the second pressure chamber forms a part of the refrigerant circuit.
摘要:
A piston type variable displacement fluid machine includes a drive shaft and a cylinder bore. A piston reciprocates along a line of movement in the cylinder bore in accordance with the rotation of the drive shaft. The stroke of the piston is varied between the maximum stroke and the minimum stroke, which is greater than zero. The displacement of the fluid machine is changed in accordance with the stroke of the piston. A ring groove is formed on the outer circumferential surface of the piston. A piston ring is fitted in the ring groove and moves with respect to the piston in the line of movement of the piston. An allowable movement amount of the piston ring with respect to the piston is greater than or equal to the minimum stroke of the piston.
摘要:
A shaft sealing assembly is located in a suction chamber of a swash plate type compressor to seal the space between a drive shaft and a housing. A first end portion of the drive shaft is supported by a first radial bearing. A second end portion of the drive shaft is supported by a second radial bearing. The suction chamber is closer to the first end portion of the drive shaft than the first radial bearing is. An axial passage is formed in the drive shaft to connect the suction chamber to the crank chamber. An inlet of the axial passage is closer to the second end portion than the second radial bearing is. An outlet of the axial passage is closer to the second end portion than the first radial bearing is.
摘要:
The compressor has a cooling structure to effectively cool a shaft seal device interposed between a housing of the compressor and a rotary shaft. The front housing has a through-hole through which the rotary shaft extends, and the shaft seal device is arranged in the through-hole. A passage (suction passage portion) is connected to the thorough-hole. An inlet from a portion of the passage to the through-hole is arranged right above the rotary shaft, and an outlet from the through-hole to a portion of the passage is arranged right below the rotary shaft. The passage is connected to a suction pressure region outside the compressor and to the suction chamber via the through-hole.
摘要:
A swash plate type compressor includes a cylinder blocks having a crank case which communicates with a suction port and a plurality of bores formed therein. The ends of each bore are covered with a pair of housings. The bores communicate with discharge chambers. A drive shaft is rotatably placed within the cylinder blocks. A swash plate is rotatable in the crank case, and is mounted on the drive shaft. A plurality of pistons are drivably coupled to the swash plate, and are reciprocotable in their respective bores. As the pistons reciprocate, a refrigerant in the crank case is sucked into each bore and is compressed therein. The compressed refrigerant is discharged into the discharge chambers from the bores. A passage for transporting the refrigerant between the discharge chambers is formed along the axis of the drive shaft. Seals are provided between the cylinder blocks and the drive shaft for sealing the gap between the discharge chambers and the crank case.
摘要:
The invention has its object to provide a swash plate compressor capable of realizing demonstration of an excellent sliding characteristic when a drive shaft is rotated at high speed, and of a high refrigerating capacity when the drive shaft is rotated at low speed.With the swash plate compressor of the invention, an oil guide groove, an oil guide hole, a first hole, an outflow hole, a valve hole, a communication port, a receiving chamber, a throttle hole, and a second hole constitute a release passage. The oil guide groove, the oil guide hole, the first hole, the outflow hole, the valve hole, the communication port, the receiving chamber, and the throttle hole constitute a first passage. Also, the second hole constitute a second passage. A valve mechanism increases a ratio, at which the first passage occupies the release passage, as a drive shaft is increased in rotating speed.
摘要:
A compressor has a swash plate supported on a drive shaft for an integral rotation. The swash plate is coupled to a plurality of pistons reciprocally moveable in a cylinder block to compress gas therein. Reaction force of the compressed gas applied to the piston and causing axial load acting on the swash plate and the drive shaft is buffered by buffer structure. The buffer structure comprises a first bearing interposed between a first surface of the swash plate and the cylinder block. The buffer structure has a second bearing interposed between a second surface of the swash plate and the cylinder block. One of the bearings is arranged to be flexibly deformable to absorb the axial load while the other bearing is arranged to be rigid to receive the axial load and transmit the axial load to the cylinder block.
摘要:
An air-conditioning system capable of always effectively performing the heating function by selectively using one of a cooling circuit and a heating circuit sharing a variable displacement type compressor is disclosed. An electromagnetic capacity control valve (43) controls the discharge capacity of a variable displacement type compressor (25) in response to the differential pressure between the discharge pressure Pd of a discharge chamber (132) and the suction pressure Ps of a suction chamber (131). The energization and deenergization of the capacity control valve (43) is controlled by a control unit (59). When a cooling command switch (63) is turned on, the control unit (59) deenergizes a switching valve (29) thereby to control the cooling operation while at the same time controlling the discharge capacity by the capacity control valve (43). When a heating command switch (64) is turned on, on the other hand, the control unit (59) energizes the switching valve (29) thereby to control the heating operation while at the same time controlling the discharge capacity by the capacity control valve (43).
摘要:
A heating and cooling system, which includes a refrigerant circulation circuit, first and second targets, first and second refrigerant circuits, a first switching section, and a control device, is disclosed. The first switching section is selectively switched between a first position at which a refrigerant discharged from a discharge area of a compressor is permitted to flow to the first target and a second position at which the refrigerant is not permitted to flow to the first target. The control device switches the first switching section to the first position so that the refrigerant circulation circuit functions as a first refrigerant circuit, thereby heating the first target and cooling the second target. The control device switches the first switching section to the second position so that the refrigerant circulation circuit functions as a second refrigerant circuit, thereby cooling only the second target.
摘要:
A heat recovery system includes an electric rotary device, a heat exchanger, a pipe and a reservoir. The electric rotary device has a stator core and a housing. The stator core is wounded with a coil. The heat exchanger provides heat exchanging between first and second heat medium. The first heat medium is in contact with the coil and absorbs heat from the coil. The pipe connects the electric rotary device to the heat exchanger and transfers the first heat medium. The reservoir is formed in the housing and stores the first heat medium. The electric rotary device has an insulative body. The insulative body prevents heat of the first heat medium from being dissipated outside of the housing.