摘要:
A disintegrant for tablets consisting of an α-1,4-glucan having a degree of polymerization of not less than 180 and less than 1230 and a dispersity (weight average molecular weight “Mw”/number average molecular weight “Mn”) of not more than 1.25 or a modified product thereof. A binder for tablets consisting of an α-1,4-glucan having a degree of polymerization of not less than 1230 and not more than 37000 and a dispersity of not more than 1.25, or a modified product thereof. A binding-disintegrating agent for tablets consisting of a low molecular weight α-1,4-glucan or a modified product thereof, and a high molecular weight α-1,4-glucan or a modified product thereof, wherein the low molecular weight α-1,4-glucan has a degree of polymerization of not less than 180 and less than 1230 and a dispersity of not more than 1.25, and wherein the high molecular weight α-1,4-glucan has a degree of polymerization of not less than 1230 and not less than 37000 and a dispersity of not more than 1.25.
摘要:
The present invention discloses a molded article containing high molecular weight α-1,4-glucan and/or its modification, and low molecular weight α-1,4-glucan and/or its modification. The low molecular weight α-1,4-glucan has the degree of polymerization of greater than or equal to 180 and less than 620. And the high molecular weight α-1,4-glucan has the degree of polymerization of greater than or equal to 620 and less than 37000. The high molecular weight α-1,4-glucan may preferably have a molecular weight distribution of not greater than 1.25, and the low molecular weight α-1,4-glucan may preferably have a molecular weight distribution of not greater than 1.25. The present invention also discloses a process for preparing the molded article, wherein the process comprises the step of adding the low molecular weight α-1,4-glucan and/or its modification to a solution comprising the high molecular weight α-1,4-glucan and/or its modification to gel the solution.
摘要:
The present application discloses a molded article, and a process for preparing a molded article consisting essentially of (i) high molecular weight linear α-1,4-glucan and (ii) low molecular weight linear α-1,4-glucan, wherein the process comprises the step of: adding the low molecular weight linear α-1,4-glucan to a solution comprising the high molecular weight linear α-1,4-glucan to gel the solution, wherein the low molecular weight linear α-1,4-glucan has a degree of polymerization of greater than or equal to 180 and less than 620, and has a molecular weight distribution of not greater than 1.25 and, the high molecular weight linear α-1,4-glucan has a degree of polymerization of greater than or equal to 620 and less than 37000, and has a molecular weight distribution of not greater than 1.25.
摘要:
A method for production of an α-glucan from a β-1,4-glucan is provided, comprising: reacting a solution containing β-1,4-glucan, a primer, a source of phosphoric acid, β-1,4-glucan phosphorylase, and α-1,4-glucan phosphorylase to produce an α-glucan. In this method, said β-1,4-glucan may be cellobiose, and said β-1,4-glucan phosphorylase may be cellobiose phosphorylase.
摘要:
The present invention provides a composition for adsorbing or trapping an undesired material, wherein the composition comprises a functional α-1,4-glucan as an active ingredient. Specifically, α-1,4-glucan is allowed to be functionalized to provide said composition for adsorbing or trapping an undesired material. There are provided a composition comprising a functional α-1,4-glucan, all or a part of which is in a form of V-type crystal or an amorphous form, as well as an article comprising the composition as a functional material.
摘要:
A first method for producing glucan comprises the step of allowing a reaction solution containing sucrose, a primer, inorganic phosphate or glucose-1-phosphate, sucrose phosphorylase, and glucan phosphorylase to react to produce glucans. The maximum value of the sucrose-phosphate ratio of the reaction solution from the start of the reaction to the end of the reaction is no more than about 17. A second method for producing glucan comprises the step of allowing a reaction solution containing sucrose, a primer, inorganic phosphate or glucose-1-phosphate, sucrose phosphorylase, and glucan phosphorylase to react to produce glucans. The reaction is conducted at a temperature of about 40 C to about 70 C.
摘要:
A sucrose phosphorylase (SP) having improved thermostability obtained by modifying a natural SP and a method for producing the SP having improved thermostability is provided. This SP having improved thermostability has an amino acid residue which is different from that of the natural sucrose phosphorylase, in at least one position selected from the group consisting of a position corresponding to position 14, a position corresponding to position 29 and a position corresponding to position 44 in motif sequence 1; a position corresponding to position 7, a position corresponding to position 19, a position corresponding to position 23 and a position corresponding to position 34 in motif sequence 2; and a position corresponding to position 19 in motif sequence 3, and wherein the enzyme activity of the SP having improved thermostability at 37° C., after heating the SP having improved thermostability in 20 mM Tris buffer (pH 7.0) at 55° C. for 20 minutes, is 20% or more of enzyme activity of the SP having improved thermostability at 37° C. before heating.
摘要:
An α-glucan phosphorylase having improved thermostability, which obtained by modifying natural α-glucan phosphorylase, and a method for producing this α-glucan phosphorylase having improved thermostability are provided. The natural α-glucan phosphorylase is derived from a plant, this α-glucan phosphorylase having improved thermostability has an amino acid residue which is different from that of the natural α-glucan phosphorylase in at least one position selected from the group consisting of a position corresponding to position 4 in a motif sequence 1L or 1H, a position corresponding to position 4 in a motif sequence 2, and a position corresponding to position 7 in a motif sequence 3L or 3H, and wherein the enzyme activity of α-glucan phosphorylase having improved thermostability at 37° C., after heating in a 20 mM citrate buffer (pH 6.7) at 60° C. for 10 minutes, is 20% or more of the enzyme activity of the α-glucan phosphorylase having improved thermostability at 37° C., before heating.
摘要:
An α-glucan phosphorylase having improved thermostability, which obtained by modifying natural α-glucan phosphorylase, and a method for producing this α-glucan phosphorylase having improved thermostability are provided. The natural α-glucan phosphorylase is derived from a plant, this α-glucan phosphorylase having improved thermostability has an amino acid residue which is different from that of the natural α-glucan phosphorylase in at least one position selected from the group consisting of a position corresponding to position 4 in a motif sequence 1L or 1H, a position corresponding to position 4 in a motif sequence 2, and a position corresponding to position 7 in a motif sequence 3L or 3H, and wherein the enzyme activity of α-glucan phosphorylase having improved thermostability at 37° C., after heating in a 20 mM citrate buffer (pH 6.7) at 60° C. for 10 minutes, is 20% or more of the enzyme activity of the α-glucan phosphorylase having improved thermostability at 37° C., before heating.
摘要:
A sucrose phosphorylase (SP) having improved thermostability obtained by modifying a natural SP and a method for producing the SP having improved thermostability is provided. This SP having improved thermostability has an amino acid residue which is different from that of the natural sucrose phosphorylase, in at least one position selected from the group consisting of a position corresponding to position 14, a position corresponding to position 29 and a position corresponding to position 44 in motif sequence 1; a position corresponding to position 7, a position corresponding to position 19, a position corresponding to position 23 and a position corresponding to position 34 in motif sequence 2; and a position corresponding to position 19 in motif sequence 3, and wherein the enzyme activity of the SP having improved thermostability at 37° C., after heating the SP having improved thermostability in 20 mM Tris buffer (pH 7.0) at 55° C. for 20 minutes, is 20% or more of enzyme activity of the SP having improved thermostability at 37° C. before heating.