摘要:
A microlens array of high converging efficiency is provided, independently of the array and lens filling rate of microlens arrays, with a method of manufacturing microlens arrays using the diffusion process. A multitude of refractive-index distribution type microlenses formed by diffusing in a planar transparent substrate a substance contributing to increasing the refractive index of the substrate are two-dimensionally and regularly arranged on the surface of the substrate. The microlenses are densely arranged on the surface of the substrate, and diffusion fronts of the microlenses form regions where the diffusion fronts are fused with those of the adjoining microlenses. The length of a region where certain two adjoining microlenses are fused together, in the direction of a straight line connecting the centers of the two microlenses is less than 20% of the array pitch of the microlenses in the above-mentioned direction.
摘要:
By fitting a planar microlens array provided with one or more marks with a liquid crystal panel provided with one or more corresponding marks, it is possible to align the position of both exactly. The marks according to the present invention may comprise rod shapes, cross shapes, ring shapes, or square shapes, among others.
摘要:
For providing a stamper for forming a planar micro-lens array, a stamper is prepared by forming plural concave portions 2 for forming lens portion upon a stamping surface thereof, and a trap portion 3 is provided surrounding said plural concave portions and continuing until an outer edge thereof. Then, onto the stamping surface, on which a release agent 4 is applied, there is applied a high refractive index resin 5, and a glass substrate 6 is pressed onto the high refractive index resin 5 to exude it. With this operation, the high refractive index resin 5 is filled into each of the plural concave portions 2, and any excess is received or accommodated in the trap portion 3, thereby preventing excess resin from being forced outside.
摘要:
According to the present invention, there is provided a method of designing a collimator array device which enables reduction of the insertion loss because of the variation of the optical length. When the beam waist is positioned at the intermediate position between the emitting side planar microlens and the receiving side planar microlens (d1=L/2), the distance d0 between the emitting side fiber array and the emitting side planar microlens can be used as the distance between the receiving side fiber array and the receiving side planar microlens, and thereby the design of the collimator array device can be simplified. The distance d0 for satisfying d1=L/2 is calculated and two values d0-2 and d0-4 are obtained. By selecting the smaller value d0-2, it is possible to reduce the insertion loss because of the shift at the time of coupling.
摘要翻译:根据本发明,提供了一种设计准直仪阵列器件的方法,该器件能够由于光学长度的变化而降低插入损耗。 当束腰位于发射侧平面微透镜和接收侧平面微透镜之间的中间位置(d 1 = L / 2)时,发射侧光纤阵列和发射侧平面微透镜之间的距离d0可以用作 可以简化接收侧光纤阵列与接收侧平面微透镜之间的距离,从而简化准直器阵列器件的设计。 计算满足d 1 = L / 2的距离d0,并获得两个值d0-2和d0-4。 通过选择较小的值d0-2,由于耦合时的偏移,可以减小插入损耗。
摘要:
A large number of microscopic recess portions are formed on a surface of a glass substrate in a single dimension or two dimensions by conducting a wet etching through a mask. The large number of microscopic recess portions are aligned densely by again conducting the wet etching but not through the mask. A separating agent is applied upon the surface of the glass substrate and a light-curable or heat-curable resin material of high refractive index is applied thereon. The high refractive index resin material is cured, after piling a first glass substrate upon the high refractive index resin material so as to extend the high refractive index resin material thereon. The high refractive index resin material which is cured and the first glass substrate are separated from the glass substrate, and a low refractive index resin material is applied on the high refractive index resin material which is cured on the first glass substrate. The low refractive index resin material is cured, after piling a second glass substrate on the low refractive index resin material so as to extend the low refractive index resin material thereon.
摘要:
A microlens array of high converging efficiency is provided, independently of the array and lens filling rate of microlens arrays, with a method of manufacturing microlens arrays using the diffusion process. A multitude of refractive-index distribution type microlenses formed by diffusing in a planar transparent substrate a substance contributing to increasing the refractive index of the substrate are two-dimensionally and regularly arranged on the surface of the substrate. The microlenses are densely arranged on the surface of the substrate, and diffusion fronts of the microlenses form regions where the diffusion fronts are fused with those of the adjoining microlenses. The length of a region where certain two adjoining microlenses are fused together, in the direction of a straight line connecting the centers of the two microlenses is less than 20% of the array pitch of the microlenses in the above-mentioned direction.
摘要:
An object of the invention is to provide a technology pertaining to a control system for an internal combustion engine using CNG to allow an internal combustion engine to operate appropriately even when properties of CNG change. To achieve the object, in the control system for an internal combustion engine using compressed natural gas according to the invention, when air-fuel ratio feedback control that corrects the fuel injection quantity in such a way as to make the air-fuel ratio of the air-fuel mixture burned in the internal combustion engine substantially equal to a target air-fuel ratio, a control parameter relating to a condition of combustion of the air-fuel mixture is corrected based on the magnitude of the correction value in the air-fuel ratio feedback control.
摘要:
The present application provides a thin film transistor and a method of manufacturing same capable of suppressing diffusion of aluminum to oxide semiconductor and selectively etching oxide semiconductor and aluminum oxide. The thin film transistor includes: a gate electrode; a channel layer whose main component is oxide semiconductor; a gate insulating film provided between the gate electrode and the channel layer; a sealing layer provided on the side opposite to the gate electrode, of the channel layer; and a pair of electrodes which are in contact with the channel layer and serve as a source and a drain. The sealing layer includes at least a first insulating film made of a first insulating material, and a second insulating film made of a second insulting material having etching selectivity to each of the oxide semiconductor and the first insulating material and provided between the first insulating film and the channel layer.
摘要:
A thin film transistor, which is capable of improving carrier mobility, and a display device and an electronic device, each of which uses the thin film transistor, are provided. The thin film transistor includes: a gate electrode; an oxide semiconductor layer including a multilayer film including a carrier travel layer configuring a channel and a carrier supply layer for supplying carriers to the carrier travel layer; a gate insulating film provided between the gate electrode and the oxide semiconductor layer; and a pair of electrodes as a source and a drain. A conduction band minimum level or a valence band maximum level corresponding to a carrier supply source of the carrier supply layer is higher in energy than a conduction band minimum level or a valence band maximum level corresponding to a carrier supply destination of the carrier travel layer.
摘要:
There is provided a thin film transistor including: a gate electrode; a pair of source/drain electrodes; a first oxide semiconductor layer provided between the gate electrode, and the pair of source/drain electrodes, and forming a channel; and a second oxide semiconductor layer provided on the pair of source/drain electrodes side of the first oxide semiconductor layer, and having a polarity different from that of the first oxide semiconductor layer.