摘要:
The invention relates to the use of and method of forming Low Temperature Cofired Ceramic (LTCC) circuits for high frequency applications. Furthermore, the invention relates to the novel LTCC thick film compositions and the structure itself.
摘要:
A glass composition consisting essentially of, based on mole percent, 46-56% B2O3, 0.5-8.5% P2O5, SiO2 and mixtures thereof, 20-50% CaO, 2-15% Ln2O3 where Ln is selected from the group consisting of rare earth elements and mixtures thereof; 0-6% M′2O where M′ is selected from the group consisting of alkali elements; and 0-10% Al2O3, with the proviso that the composition is water millable.
摘要翻译:一种玻璃组合物,其基本上由摩尔百分数组成,为46-56%B2O3,0.5-8.5%P2O5,SiO2及其混合物,20-50%CaO,2-15%Ln2O3,其中Ln选自稀有金属 地球元素及其混合物; 0-6%M'2O其中M'选自碱元素; 和0-10%的Al 2 O 3,条件是组合物是可水洗的。
摘要:
A glass composition consisting essentially of, based on mole percent, 46-56% B2O3, 0.5-8.5% P2O5, SiO2 and mixtures thereof, 20-50% CaO, 2-15% Ln2O3 where Ln is selected from the group consisting of rare earth elements and mixtures thereof; 0-6% M′2O where M′ is selected from the group consisting of alkali elements; and 0-10% Al2O3, with the proviso that the composition is water millable.
摘要翻译:一种玻璃组合物,其基本上由摩尔百分数组成,为46-56%B2O3,0.5-8.5%P2O5,SiO2及其混合物,20-50%CaO,2-15%Ln2O3,其中Ln选自稀有金属 地球元素及其混合物; 0-6%M'2O其中M'选自碱元素; 和0-10%的Al 2 O 3,条件是组合物是可水洗的。
摘要:
The present invention is directed to a thick film composition for use in low temperature co-fired ceramic circuits comprising, based on weight percent total thick film composition: (a) 30-98 weight percent finely divided particles selected from noble metals, alloys of noble metals and mixtures thereof; (b) one or more selected inorganic binders and/or mixtures thereof, and dispersed in (c) organic medium, and wherein said glass compositions are immiscible or partially miscible with remnant glasses present in the low temperature co-fired ceramic substrate glasses at the firing conditions.The present invention is further directed to methods of forming multilayer circuits utilizing the above composition and the use of the composition in high frequency applications (including microwave applications).
摘要:
A composition for forming transition vias and transition line conductors is disclosed for minimizing interface effects at electrical connections between dissimilar metal compositions. The composition has (a) inorganic components selected from the group consisting of (i) 20-45 wt % gold and 80-55 wt % silver and (ii) 100 wt % silver-gold solid solution alloys, and (b) an organic medium. The composition may also contain (c) 1-5 wt %, based upon the weight of the composition, of oxides or mixed oxides of metals selected from the group consisting of Cu, Co, Mg and Al and/or high viscosity glasses mainly containing refractory oxides. The composition may be used as a multi-layer composition in a via fill. Multi-layer circuits such as LTCC circuits and devices may also be formed using the composition for forming transition vias and transition line conductors.
摘要:
A composition for forming transition vias and transition line conductors is disclosed for minimizing interface effects at electrical connections between dissimilar metal compositions. The composition has (a) inorganic components selected from the group consisting of (i) 20-45 wt % gold and 80-55 wt % silver and (ii) 100 wt % silver-gold solid solution alloys, and (b) an organic medium. The composition may also contain (c) 1-5 wt %, based upon the weight of the composition, of oxides or mixed oxides of metals selected from the group consisting of Cu, Co, Mg and Al and/or high viscosity glasses mainly containing refractory oxides. The composition may be used as a multi-layer composition in a via fill. Multi-layer circuits such as LTCC circuits and devices may also be formed using the composition for forming transition vias and transition line conductors.
摘要:
The invention relates to thick film conductor compositions which are useful in application to both via-fill and/or line conductors to manufacture of Low Temperature Co-fireable Ceramic (LTCC) devices and other Multilayer Interconnect (MLI) ceramic composite circuits such as Photosensitive Tape On Substrates (PTOS); gold, silver and mixed metal multilayer circuits and devices. The invention is useful for forming microwave and other high frequency circuit components selected from the group comprising: antenna, filters, baluns, beam former, I/O's, couplers, via feedthroughs, EM coupled feedthroughs, wirebond connection, and transmission lines.
摘要:
The invention relates to methods of forming high frequency receivers, transmitters and transceivers from Low Temperature Co-fired Ceramic (LTCC) materials. Two or more layers of a low k thick film dielectric tape and in contact with each other and two or more layers of a low k thick film dielectric tape and in contact with each other form a low k high k LTCC structure with improved properties and the ability to support economical mass production techniques for high frequency transceivers. The invention also relates to the LTCC receiving, transmitting and transceiving structures and the devices made from such structures.
摘要:
The present invention is directed to the use of a thick film paste composition comprising, in weight percent total paste composition, materials selected from mixtures of lead iron tungstate niobate solid solutions 30 to 80%, calcined mixtures of barium titanate, lead oxide and fused silica 20 to 70%, barium titanate 30 to 50%, calcined mixtures of barium titanate 30 to 50%, barium titanate and calcined mixtures of barium titanate 30 to 50%, lead oxide and fused silica 50-80%, and a lead germanate glass 3-20%, as a thick film paste via fill composition for use in the formation of multilayer low temperature cofired ceramic circuits.
摘要:
The invention relates to methods of forming high frequency receivers, transmitters and transceivers from Low Temperature Co-fired Ceramic (LTCC) materials. Two or more layers of a low k thick film dielectric tape and in contact with each other and two or more layers of a low k thick film dielectric tape and in contact with each other form a low k high k LTCC structure with improved properties and the ability to support economical mass production techniques for high frequency transceivers. The invention also relates to the LTCC receiving, transmitting and transceiving structures and the devices made from such structures.