摘要:
A carrier travel layer is formed on the substrate of a semiconductor device with a buffer layer interposed, and a spacer layer and carrier supply layer are then formed on this carrier travel layer. On the carrier supply layer are provided a source electrode and a drain electrode, and a gate electrode is provided on an interposed Schottky layer. The carrier supply layer is composed of AlGaN and has tensile strain. The Schottky layer is composed of InGaN and has compressive strain. A negative piezoelectric charge is induced on the carrier supply layer side of the Schottky layer, and a positive piezoelectric charge is induced on the opposite side of the Schottky layer, whereby a sufficient Schottky barrier height is obtained and leakage current is suppressed.
摘要:
A semiconductor device of the present invention comprises Al0.3Ga0.7N layer 4 and Al0.1Ga0.9N layer 5 having different Al contents as an electron supply layer on GaN layer 6 serving as an active layer. An area where Al0.3Ga0.7N layer 4 is formed is used as a low resistance area, while an area where Al0.1Ga0.9N layer 5 is formed is used as a high resistance area. As a result, a distribution of two-dimensional electrons serving as carriers is produced within a horizontal plane perpendicular to the thickness direction of the layers to form a desired device configuration. For example, when the configuration is applied to a transistor configuration, a channel concentration under a gate is reduced to improve withstand voltage between the gate and a drain, and at the same time, a channel concentration in source and drain areas is increased to realize low contact resistance.
摘要:
In a method of manufacturing a semiconductor device, trench sections are formed on a side of one of opposing surface portions of a substrate. At lest a part of each of the trench sections is covered by a power supply metal layer which is formed on the one surface portion of the substrate. The substrate is fixed to a support such that the one surface of the substrate fits to the support. A chip is separated from the substrate using the trench sections. A conductive film is formed on side surface portions of the chip and the other surface portion of the chip. Then, the chip is separated from the support.
摘要:
A hetero-junction FET has an intermediate layer including n-type-impurity doped layer between an electron supply layer and an n-type cap layer. The intermediate layer cancels the polarized negative charge generated between the electron supply layer and the n-type cap layer by ionized positive charge, thereby reducing the barrier against the electrons and source/drain resistance.
摘要:
An object of the present invention is to improve, in a group III nitride semiconductor device, the productivity, heat radiation characteristic and performance in the element high speed operation; upon a sapphire substrate in which an A plane (an (11-20) plane) is set to be the basal plane, an epitaxial growth layer of a group III nitride semiconductor is formed and, thereon, a gate electrode 16, a source electrode 15 and a drain electrode 17 are formed; these electrodes are disposed in such a way that a direction along which they are laid makes an angle within 20° with respect to a C axis of sapphire.
摘要:
A group III nitride semiconductor device of field effect transistor type having improved productivity, reduced parasitic capacitances adapted for excellent device performance in high-speed operation as well as good heat diffusion characteristics. The device includes an epitaxial growth layer of a group III nitride semiconductor with a buffer layer laid under it, formed on an A plane (an (11-20) plane) of a sapphire. Thereon a gate electrode, a source electrode, a drain electrode, and pad electrodes are formed, and a ground conductor layer is formed on the back face of the sapphire substrate. A thickness of said sapphire substrate tsub satisfies the following Equation (1). t sub ≦ 10 ϵ sub S pad ϵ epi S gate t act where Spad is an area of the pad electrode; Sgate is an area of the gate electrode; &egr;sub is a relative permittivity of the sapphire substrate in the direction of the thickness; &egr;epi is a relative permittivity of the group III nitride semiconductor layer in the direction of the thickness; tsub is a thickness of the sapphire substrate; and tact is an effective thickness of the group III nitride semiconductor layer.
摘要:
A p-type layer and an n-type layer which constitute a barrier layer are provided, and a leak of the holes at the time of the negative bias accompanying the p-type layer buffer required for the higher tolerance voltage is suppressed, and the discharge of the holes at the positive bias can be efficiently carried out. The tolerance voltage at the time of the OFF state is raised at the p-type layer buffer, and the tolerance voltage at the time of the ON state at the discharge of the holes is raised. Since no leak is generated from the p-type layer, the drain current is not lowered, and a higher output can be realized both in terms of the current and in terms of the voltage.
摘要:
A compound semiconductor field effect transistor having, between a gate electrode and a drain electrode, a non-gate region which is the channel region not covered by the gate electrode, wherein a plurality of isolation regions are formed in the non-gate region in such a way that they extend in the direction of channel current and contact with the gate electrode. This compound semiconductor field effect transistor is improved in breakdown voltage between drain and gate and yet retains the high-speed operability of transistor.
摘要:
A high power FET has a first conductivity epitaxial layer overlying a semi-insulating substrate, a second conductivity epitaxial layer, a gate being in Schottky contact with the second conductivity layer, and source and drain regions being in ohmic contact with the second conductivity layer. Impurity concentration N2 and thickness D of the second conductivity layer are such that the following relationship holds: d > 2 ϵ S φ S eN 2 + 2 ϵ S V bi eN 2 N 1 N 1 + N 2 wherein N1, is the impurity concentration of the first conductivity epitaxial layer, &phgr;s, &egr;s and Vbi, are surface potential, dielectric constant and a diffused potential, respectively, of the second conductivity epitaxial layer, and e is an elementary charge of electron. An electrically neutral region is formed in the second conductivity epitaxial layer when no voltage is applied between the gate and the source region, whereby the electrically neutral region functions similarly to the gate of a cascode-connected MOSFET, which improves the breakdown voltage of the FET.
摘要:
There are provided a compound semiconductor device having a semiconductor multilayered structure, and a method of manufacturing the same. The semiconductor multilayered structure consists of a first recess etching stopper formed on a conductive layer of a compound semiconductor, a first semiconductor layer formed on the first recess etching stopper layer, a second recess etching stopper layer formed on the first semiconductor layer, and a second semiconductor layer formed on the second recess etching stopper layer.