Abstract:
In one embodiment, a method includes selectively depositing a collar material between a number of memory containers. The collar material along a side of a first memory container of the number of memory containers is in contact with the collar material along a side of a second memory container. An opening exists between the collar material along a corner of the first memory container and the collar material along a corner of a third memory container.
Abstract:
In one embodiment, a method includes selectively depositing a collar material between a number of memory containers. The collar material along a side of a first memory container of the number of memory containers is in contact with the collar material along a side of a second memory container. An opening exists between the collar material along a corner of the first memory container and the collar material along a corner of a third memory container.
Abstract:
In one embodiment, a method includes selectively depositing a collar material between a number of memory containers. The collar material along a side of a first memory container of the number of memory containers is in contact with the collar material along a side of a second memory container. An opening exists between the collar material along a corner of the memory container and the collar material along a corner of a third memory container.
Abstract:
In one embodiment, a method includes selectively depositing a collar material between a number of memory containers. The collar material along a side of a first memory container of the number of memory containers is in contact with the collar material along a side of a second memory container. An opening exists between the collar material along a corner of the first memory container and the collar material along a corner of a third memory container.
Abstract:
Etch solutions for selectively etching doped oxide materials in the presence of silicon nitride, titanium nitride, and silicon materials, and methods utilizing the etch solutions, for example, in construction of container capacitor constructions are provided. The etch solutions are formulated as a mixture of hydrofluoric acid and an organic acid having a dielectric constant less than water, optionally, with an inorganic acid, and a pH of 1 or less.
Abstract:
Etch solutions for selectively etching doped oxide materials in the presence of silicon nitride, titanium nitride, and silicon materials, and methods utilizing the etch solutions, for example, in the construction of container capacitor constructions are provided. The etch solutions are formulated as a mixture of hydrofluoric acid and an organic acid having a dielectric constant less than water, optionally with an inorganic acid, and a pH of 1 or less.
Abstract:
Etch solutions for selectively etching doped oxide materials in the presence of silicon nitride, titanium nitride, and silicon materials, and methods utilizing the etch solutions, for example, in the construction of container capacitor constructions are provided. The etch solutions are formulated as a mixture of hydrofluoric acid and an organic acid having a dielectric constant less than water, optionally with an inorganic acid, and a pH of 1 or less.
Abstract:
An etching process includes providing a dielectric first film on a substrate and a sacrificial second film on the dielectric first film. A conductive structure such as a container capacitor is formed in a recess in the first and second films. The conductive structure is exposed as to its external surface by an etch process that resists destructive collapse of the conductive structure.
Abstract:
In one embodiment, a method includes providing a semiconductor substrate that includes a memory container having a double-sided capacitor. The method also includes vapor phase etching a layer adjacent to the side wall of the memory container with a vapor having a surface tension lowering agent.
Abstract:
In one embodiment, a method includes providing a semiconductor substrate that includes a memory container having a double-sided capacitor. The method also includes vapor phase etching a layer adjacent to the side wall of the memory container with a vapor having a surface tension lowering agent.