Abstract:
An etching process includes providing a dielectric first film on a substrate and a sacrificial second film on the dielectric first film. A conductive structure such as a container capacitor is formed in a recess in the first and second films. The conductive structure is exposed as to its external surface by an etch process that resists destructive collapse of the conductive structure.
Abstract:
In one embodiment, a method includes providing a semiconductor substrate that includes a memory container having a double-sided capacitor. The method also includes vapor phase etching a layer adjacent to the side wall of the memory container with a vapor having a surface tension lowering agent.
Abstract:
In one embodiment, a method includes providing a semiconductor substrate that includes a memory container having a double-sided capacitor. The method also includes vapor phase etching a layer adjacent to the side wall of the memory container with a vapor having a surface tension lowering agent.
Abstract:
A surface treatment process includes rinsing a substrate after a dry development process to remove residual resist material prior to patterning a hard mask layer. An amorphous carbon hard mask is dry developed and thereafter, the surface treatment includes an aqueous ammonium hydroxide and hydrogen peroxide composition. While the composition acts as a solvent to the resist, the composition is selective to the amorphous carbon hard mask and the surface under the hard mask.
Abstract:
In one embodiment, a method includes selectively depositing a collar material between a number of memory containers. The collar material along a side of a first memory container of the number of memory containers is in contact with the collar material along a side of a second memory container. An opening exists between the collar material along a corner of the first memory container and the collar material along a corner of a third memory container.
Abstract:
A method of cleaning wafer surfaces includes providing a wafer surface and cleaning the wafer surface using at least hydrofluoric acid (HF) and an etch reducing component. The etch reducing component is from the group of (R)4NOH wherein R═(C1-C20)alkyls, either straight or branch chained, and further wherein each R is independently a (C1-C20)alkyl, preferably a (C1-C4)alkyl, and more preferably one of tetra ethyl ammonium hydroxide (TEAH) and tetra methyl ammonium hydroxide (TMAH). A cleaning solution for use in cleaning a wafer surface includes an H2O diluted HF solution and an etch reducing component from the group above, preferably, TMAH. A system for performing an HF vapor cleaning process includes a vapor chamber for positioning a wafer having a wafer surface and means for providing an HF vapor to the vapor chamber. The HF vapor includes an inert carrier gas, an HF component, one of a water vapor or an alcohol vapor, and an etch reducing component. The etch reducing component may be from the group above, preferably, TMAH.
Abstract:
A photoresist processing method includes treating a substrate with a sulfur-containing substance. A positive-tone photoresist is applied on and in contact with the treated substrate. The method includes selectively exposing a portion of the photoresist to actinic energy and developing the photoresist to remove the exposed portion and to form a photoresist pattern on the substrate. The treating with a sulfur-containing substance reduces an amount of residual photoresist intended for removal compared to an amount of residual photoresist that remains without the treating.
Abstract:
An etching process includes providing a dielectric first film on a substrate and a sacrificial second film on the dielectric first film. A conductive structure such as a container capacitor is formed in a recess in the first and second films. The conductive structure is exposed as to its external surface by an etch process that resists destructive collapse of the conductive structure.
Abstract:
A method is provided for selectively etching native oxides or other contaminants to metal nitrides and metal oxides during manufacture of a semiconductor device. he method utilizes a substantially non-aqueous etchant which includes a source of fluorine ions. In a preferred embodiment, the etchant comprises H2SO4 and HF. The etchant selectively etches native and doped oxides or other contaminants without excessively etching metal nitrides or metal oxides on the substrate or on adjacent exposed surfaces.
Abstract translation:提供了一种在制造半导体器件期间选择性地将天然氧化物或其它污染物刻蚀成金属氮化物和金属氧化物的方法。 他方法利用包括氟离子源的基本非水性蚀刻剂。 在优选的实施方案中,蚀刻剂包括H 2 SO 4 H 4和HF。 蚀刻剂选择性地蚀刻天然的和掺杂的氧化物或其它污染物,而不会过度地蚀刻衬底上或邻近暴露表面上的金属氮化物或金属氧化物。
Abstract:
In one embodiment, a method includes providing a semiconductor substrate that includes a memory container having a double-sided capacitor. The method also includes vapor phase etching a layer adjacent to the side wall of the memory container with a vapor having a surface tension lowering agent.