摘要:
The present invention relates to an image sensor comprising a microlens array, and to a manufacturing method thereof. The method of the present invention includes gradually increasing the aluminum composition ratio of a compound semiconductor as the latter gradually gets farther from a substrate, to enable a microlens-forming layer to grow, and making the oxidation rate of the region adjacent to the substrate slower and the oxidation rate of the region farther from the substrate faster, making the interface between the oxidized region and the unoxidized region into a lens shape after the completion of oxidation. The thus-made lens is integrated into an image sensor. The present invention reduces costs for manufacturing image sensors in which a microlens is integrated, increases the signal-to-noise ratio and resolution of the image sensor, and achieves improved sensitivity.
摘要:
The present invention pertains to a device for measuring a temperature distribution, which can measure a temperature distribution without contacting a minor sample having a three-dimensional structure. More particularly, the device for measuring the temperature distribution can measure a three-dimensional temperature distribution for a sample, wherein the temperature distribution in a depth direction (direction z) of the sample is measured by a thermo-reflectance technique using a chromatic dispersion lens, a diffraction spectrometer and an optical detection array; and the temperature distribution in parallel directions (direction x-y axes) of the sample is measured by the thermo-reflectance technique using a biaxial scanning mirror.
摘要:
The present invention pertains to a device for measuring a temperature distribution, which can measure a temperature distribution without contacting a minor sample having a three-dimensional structure. More particularly, the device for measuring the temperature distribution can measure a three-dimensional temperature distribution for a sample, wherein the temperature distribution in a depth direction (direction z) of the sample is measured by a thermo-reflectance technique using a chromatic dispersion lens, a diffraction spectrometer and an optical detection array; and the temperature distribution in parallel directions (direction x-y axes) of the sample is measured by the thermo-reflectance technique using a biaxial scanning mirror.
摘要:
The present invention relates to a jig for processing the inner surface of an aluminum alloy Winston cone baffle having the thickness of a sheet through an ultra-precision machining, the jig having a shape identically corresponding to the outer shape of a Winston cone baffle having a can body shape made up of compound parabolic, and divided into an upper plate jig and a lower plate jig in formation, wherein the upper plate jig is divided in two, a left side jig and a right side jig, which are formed to correspond in shape and size so as to enable isolation or coupling to/from each other, and the inner surface of the Winston cone baffle attached inside the upper plate jig is made to enable ultra-precision machining at the cutting speed of 220 m/min-300 m/min, which enables the inner surface of the Winston cone baffle to process a slickenside having approximately 4 nm of surface roughness, and in particular, ultra-precision machining at surface roughness of Ra=2.32 nm in a processing condition of cutting speed at 260 m/min, cutting depth at 4 micrometer, and feeding speed at 1 mm/min, thereby enabling formation of a Winston cone baffle through low-cost ultra-precision machining.
摘要:
The present invention relates to a paired optical fiber probe with a single body lens and a method for manufacturing the same. The probe includes a first optical fiber, a second optical fiber arranged in parallel with the first optical fiber, and an optical fiber lens which is formed by heating a predetermined region including one end of the first optical fiber and one end of the second optical fiber using a heating means such that ends of the first and second optical fibers are integrally connected to each other, the optical lens having a lens surface with a predetermined radius of curvature. Thus, an optical coupling efficiency can be effectively improved through a simple manufacturing process, and the probe of the present invention can be utilized in a fluorescence spectroscopic system or an imaging system adopting reflectometry.
摘要:
The present invention relates to a bit for processing the inside diameter of a work material, the bit having on the outer surface of a shank a vibration preventing structure comprising a vibration absorption body made of a silicone material, and a hollow wire rod, thereby absorbing the vibration generated from a machine tool, preventing resonance generated between the work material and a tool, and thus, enabling the implementation of a slickenside from ultra-precision machining.
摘要:
Provided is an optical system for a thermal image microscope. The optical system includes an image forming unit and a relay unit. The image forming unit forms a focus. The relay unit elongates an optical path. Here, the image forming unit includes six lenses. The relay unit includes two lenses. Aspherical surfaces of the lenses are all convex surfaces.
摘要:
Provided is an optical system for a thermal image microscope. The optical system includes an image forming unit and a relay unit. The image forming unit forms a focus. The relay unit elongates an optical path. Here, the image forming unit includes six lenses. The relay unit includes two lenses. Aspherical surfaces of the lenses are all convex surfaces.
摘要:
The present invention relates to a bit for processing the inside diameter of a work material, the bit having on the outer surface of a shank a vibration preventing structure comprising a vibration absorption body made of a silicone material, and a hollow wire rod, thereby absorbing the vibration generated from a machine tool, preventing resonance generated between the work material and a tool, and thus, enabling the implementation of a slickenside from ultra-precision machining.
摘要:
The present invention relates to a jig for processing the inner surface of an aluminum alloy Winston cone baffle having the thickness of a sheet through an ultra-precision machining, the jig having a shape identically corresponding to the outer shape of a Winston cone baffle having a can body shape made up of compound parabolic, and divided into an upper plate jig and a lower plate jig in formation, wherein the upper plate jig is divided in two, a left side jig and a right side jig, which are formed to correspond in shape and size so as to enable isolation or coupling to/from each other, and the inner surface of the Winston cone baffle attached inside the upper plate jig is made to enable ultra-precision machining at the cutting speed of 220 m/min-300 m/min, which enables the inner surface of the Winston cone baffle to process a slickenside having approximately 4 nm of surface roughness, and in particular, ultra-precision machining at surface roughness of Ra=2.32 nm in a processing condition of cutting speed at 260 m/min, cutting depth at 4 micrometer, and feeding speed at 1 mm/min, thereby enabling formation of a Winston cone baffle through low-cost ultra-precision machining.