摘要:
A mobile telephone having a main body and a sub-body closably mounted on the main body. The mobile telephone includes an opening/closing device installed in the main body, for automatically opening and closing the sub-body against the main body; a switch located at a specific place on the main body, for driving the opening/closing device; a detector for detecting an opening angle of the opening/closing device; and a controller for controlling rotation of the opening/closing device to a predetermined opening angle by analyzing an output of the detector.
摘要:
Disclosed is a multiple nozzle evaporator in which a material to be evaporated in the evaporator can be deposited on a substrate with an improved efficiency of use of the material, thereby forming a large-area uniform thin film. The evaporator includes a rectangular post-shaped crucible with an open top face; and a nozzle having a body portion having a rectangular post-like shape with a height smaller than that of the crucible and assembled to an upper portion of the crucible, and a plurality of evaporation tubes penetrating through the body portion between top and bottom faces of the body portion. The evaporation tubes are divided into four groups of which evaporation tubes are inclined toward respective four corners of a top face of the nozzle unit. An evaporated material spouts toward peripheral areas of a substrate due to the inclined evaporation tubes, thereby improving the uniformity of a thin film to be deposited and the efficiency of use of the evaporated material, and preventing condensation of the evaporated material at a spouting portion.
摘要:
Disclosed is a multiple nozzle evaporator in which a material to be evaporated in the evaporator can be deposited on a substrate with an improved efficiency of use of the material, thereby forming a large-area uniform thin film. The evaporator includes a rectangular post-shaped crucible with an open top face; and a nozzle having a body portion having a rectangular post-like shape with a height smaller than that of the crucible and assembled to an upper portion of the crucible, and a plurality of evaporation tubes penetrating through the body portion between top and bottom faces of the body portion. The evaporation tubes are divided into four groups of which evaporation tubes are inclined toward respective four corners of a top face of the nozzle unit. An evaporated material spouts toward peripheral areas of a substrate due to the inclined evaporation tubes, thereby improving the uniformity of a thin film to be deposited and the efficiency of use of the evaporated material, and preventing condensation of the evaporated material at a spouting portion.
摘要:
Disclosed is a multiple nozzle evaporator in which a material to be evaporated in the evaporator can be deposited on a substrate with an improved efficiency of use of the material, thereby forming a large-area uniform thin film. The evaporator includes a cylindrical or rectangular post-shaped crucible 31 or 51 with an open top face: and a nozzle unit 32 having a body portion having a cylindrical or rectangular post-like shape with a height smaller than that of the crucible 31 or 51 and assembled to an upper portion of the crucible, and a plurality of evaporation tubes formed at an angle while penetrating through the body portion between top and bottom feces of the body portion. An evaporated material spouts toward peripheral areas of a substrate due to the inclined evaporation tubes, thereby improving the uniformity of a thin film to be deposited and the efficiency of use of the evaporated material and preventing condensation of the evaporated material at a spouting portion.
摘要:
The present invention relates to a structure of a substrate with electrodes embedded thereinto for use in a flat display device, the device having the structure of the substrate, and a method of manufacturing the structure of the substrate and the device, wherein a problem produced in a case where the electrodes protrude from the substrate for use in the flat display device can be solved, the resistance of the electrodes can be reduced by increasing the cross-sectional areas thereof, the amount of luminescence emitted to the front of the luminescence device can be increased, and the substrate can be kept flat even though the thickness of the electrodes is increased. The device is formed on the substrate (10) by etching a top surface of the substrate (10) for use in the flat display device in a predetermined pattern and then embedding the electrodes into the etched portions or grooves (11). Accordingly, the device can be kept flat and maintain a uniform shape even after a hole transport layer or an electron transport layer has been formed thereon, the yield of the device can be increased, and voltage drop due to the electrodes in a case where the display device becomes larger in area can be minimized, and the amount of luminescence emitted to the front of the device can be increased.
摘要:
Disclosed is a dry cleaning apparatus and method using cluster for cleaning a surface of a specimen such as semiconductor wafer. The cleaning method first forms a neutral cluster no having polarity by passing a cleaning gas such as argon, nitrogen, or carbon dioxide gas through a sand glass-shaped nozzle. The formed neutral cluster is injected at an acute angle with respect to a surface of the specimen, thereby removing particles or organic remnants attached on the surface of the specimen without damaging the surface of the specimen.
摘要:
Disclosed is a multiple nozzle evaporator in which a material to be evaporated in the evaporator can be deposited on a substrate with an improved efficiency of use of the material, thereby forming a large-area uniform thin film. The evaporator includes a cylindrical or rectangular post-shaped crucible 31 or 51 with an open top face; and a nozzle unit 32 having a body portion having a cylindrical or rectangular post-like shape with a height smaller than that of the crucible 31 or 51 and assembled to an upper portion of the crucible, and a plurality of evaporation tubes formed at an angle while penetrating through the body portion between top and bottom faces of the body portion. An evaporated material spouts toward peripheral areas of a substrate due to the inclined evaporation tubes, thereby improving the uniformity of a thin film to be deposited and the efficiency of use of the evaporated material, and preventing condensation of the evaporated material at a spouting portion.
摘要:
The present invention relates to an evaporator for manufacturing a thin film, and more particularly to a linear or planar type evaporator for evaporating and depositing a source material on a substrate located over the evaporator by using a slit with a certain pattern, comprising a crucible formed of an elongate barrel longitudinally extending to a predetermined distance to contain the material to be deposited therein; and a slit formed on the top surface of the crucible in the longitudinal direction of the crucible and having an area smaller than the sectional area of the crucible or a slit separately installed, thereby performing the deposition of a thin film by moving a substrate in a direction perpendicular to the longitudinal direction of the crucible. Therefore, the deposited thin film has improved uniformity of film thickness profile and a desired pattern.
摘要:
The present invention relates to a structure of a substrate with electrodes embedded thereinto for use in a flat display device, the device having the structure of the substrate, and a method of manufacturing the structure of the substrate and the device, wherein a problem produced in a case where the electrodes protrude from the substrate for use in the flat display device can be solved, the resistance of the electrodes can be reduced by increasing the cross-sectional areas thereof, the amount of luminescence emitted to the front of the luminescence device can be increased, and the substrate can be kept flat even though the thickness of the electrodes is increased. The device is formed on the substrate (10) by etching a top surface of the substrate (10) for use in the flat display device in a predetermined pattern and then embedding the electrodes into the etched portions or grooves (11). Accordingly, the device can be kept flat and maintain a uniform shape even after a hole transport layer or an electron transport layer has been formed thereon, the yield of the device can be increased, and voltage drop due to the electrodes in a case where the display device becomes larger in area can be minimized, and the amount of luminescence emitted to the front of the device can be increased.