摘要:
A method of forming a resistor from semiconductive material includes, a) providing a substrate; b) providing a layer of semiconductive material over the substrate; c) providing a pair of openings into the semiconductive material layer; d) plugging the pair of openings with an electrically conductive material to define a pair of electrically conductive pillars within the semiconductive material, the pair of pillars having semiconductive material extending therebetween to provide a resistor construction; and e) providing a conductive node to each of the electrically conductive pillars. An integrated circuit incorporating a resistor construction includes, i) a layer of semiconductive material; ii) a pair of electrically conductive pillars provided within the semiconductive material layer, the pair of pillars being separated from one another and thereby having a mass of the semiconductive material extending therebetween; and iii) an electrically conductive node in electrical connection with each of the respective conductive pillars. Alternately, a resistor is provided within a semiconductive substrate using different concentration diffusion regions.
摘要:
A method of forming a resistor from semiconductive material includes, a) providing a substrate; b) providing a layer of semiconductive material over the substrate; c) providing a pair of openings into the semiconductive material layer; d) plugging the pair of openings with an electrically conductive material to define a pair of electrically conductive pillars within the semiconductive material, the pair of pillars having semiconductive material extending therebetween to provide a resistor construction; and e) providing a conductive node to each of the electrically conductive pillars. An integrated circuit incorporating a resistor construction includes, i) a layer of semiconductive material; ii) a pair of electrically conductive pillars provided within the semiconductive material layer, the pair of pillars being separated from one another and thereby having a mass of the semiconductive material extending therebetween; and iii) an electrically conductive node in electrical connection with each of the respective conductive pillars. Alternately, a resistor is provided within a semiconductive substrate using different concentration diffusion regions.
摘要:
A method of forming a resistor from semiconductive material includes, a) providing a substrate; b) providing a layer of semiconductive material over the substrate; c) providing a pair of openings into the semiconductive material layer; d) plugging the pair of openings with an electrically conductive material to define a pair of electrically conductive pillars within the semiconductive material, the pair of pillars having semiconductive material extending therebetween to provide a resistor construction; and e) providing a conductive node to each of the electrically conductive pillars. An integrated circuit incorporating a resistor construction includes, i) a layer of semiconductive material; ii) a pair of electrically conductive pillars provided within the semiconductive material layer, the pair of pillars being separated from one another and thereby having a mass of the semiconductive material extending therebetween; and iii) an electrically conductive node in electrical connection with each of the respective conductive pillars. Alternately, a resistor is provided within a semiconductive substrate using different concentration diffusion regions.
摘要:
A method of forming a resistor from semiconductive material includes, a) providing a substrate; b) providing a layer of semiconductive material over the substrate; c) providing a pair of openings into the semiconductive material layer; d) plugging the pair of openings with an electrically conductive material to define a pair of electrically conductive pillars within the semiconductive material, the pair of pillars having semiconductive material extending therebetween to provide a resistor construction; and e) providing a conductive node to each of the electrically conductive pillars. An integrated circuit incorporating a resistor construction includes, i) a layer of semiconductive material; ii) a pair of electrically conductive pillars provided within the semiconductive material layer, the pair of pillars being separated from one another and thereby having a mass of the semiconductive material extending therebetween; and iii) an electrically conductive node in electrical connection with each of the respective conductive pillars. Alternately, a resistor is provided within a semiconductive substrate using different concentration diffusion regions.
摘要:
A method of forming a resistor from semiconductive material includes, a) providing a substrate; b) providing a layer of semiconductive material over the substrate; c) providing a pair of openings into the semiconductive material layer; d) plugging the pair of openings with an electrically conductive material to define a pair of electrically conductive pillars within the semiconductive material, the pair of pillars having semiconductive material extending therebetween to provide a resistor construction; and e) providing a conductive node to each of the electrically conductive pillars. An integrated circuit incorporating a resistor construction includes, i) a layer of semiconductive material; ii) a pair of electrically conductive pillars provided within the semiconductive material layer, the pair of pillars being separated from one another and thereby having a mass of the semiconductive material extending therebetween; and iii) an electrically conductive node in electrical connection with each of the respective conductive pillars. Alternately, a resistor is provided within a semiconductive substrate using different concentration diffusion regions.
摘要:
A method of forming a resistor from semiconductive material includes, a) providing a substrate; b) providing a layer of semiconductive material over the substrate; c) providing a pair of openings into the semiconductive material layer; d) plugging the pair of openings with an electrically conductive material to define a pair of electrically conductive pillars within the semiconductive material, the pair of pillars having semiconductive material extending therebetween to provide a resistor construction; and e) providing a conductive node to each of the electrically conductive pillars. An integrated circuit incorporating a resistor construction includes, i) a layer of semiconductive material; ii) a pair of electrically conductive pillars provided within the semiconductive material layer, the pair of pillars being separated from one another and thereby having a mass of the semiconductive material extending therebetween; and iii) an electrically conductive node in electrical connection with each of the respective conductive pillars. Alternately, a resistor is provided within a semiconductive substrate using different concentration diffusion regions.
摘要:
This invention is a process for manufacturing dynamic random access memories using stacked container capacitor cells in a split-polysilicon CMOS manufacturing flow. The split-polysilicon flow denotes that N-channel and P-channel transistor gates are formed from a single conductive layer (typically a doped polysilicon layer) using separate masking steps. In one embodiment of the present invention teaches a semiconductor manufacturing process for forming p-channel devices by the steps of: defining p-channel transistor gate electrodes having substantially vertical sidewalls over n-well regions; performing a p-type impurity implant into the n-well regions to form p-channel source and drain terminals on opposing sides of each the p-channel transistor gate electrodes; performing an angled n-type impurity implant into the n-well regions to form an n-type halo around the p-channel source and drain terminals; performing a low temperature oxidation step at a temperature ranging between 600.degree.-957.degree. C., to form poly gate sidewall oxidation about the vertical sidewalls of the p-channel transistor gate electrodes; and performing a p-type impurity implant into the n-well regions.
摘要:
NMOS and PMOS devices are formed in a split-polysilicon CMOS process using independent thickness transistor gate spacers, and using a silicon nitride layer as a mask for the p-channel region during an n+ source/drain implant step of the n-channel region. The p-channel spacer is formed significantly thicker than the n-channel spacer, thereby reducing lateral diffusion of p-type dopant species under the p-channel gate and avoiding short channel effects to improve device reliability and performance. P-channel transistor junction depth and lateral diffusion is further reduced by performing an n-channel arsenic source/drain implant before the p-channel source/drain boron difluoride implant, although the p-channel transistor gate is etched before the n-channel gate. Moreover, since the p-channel transistor gate is etched before the n-channel gate, the p-channel gate sidewalls are reoxidized as well as the n-channel gate sidewalls for improved gate oxide integrity.
摘要:
A DRAM cell having a doped monocrystalline silicon substrate for the cell's lower capacitor plate whose surface has been texturized multiple times to enhance cell capacitance. After texturization, a thin silicon nitride layer is deposited on top of the texturized substrate, followed by the deposition of a poly layer, which functions as the cell's upper, or field, capacitor plate. The nitride layer, conformal and thin compared to the surface texture of the mono substrate, transfers the texture of the substrate to the cell plate layer. The effective capacitor plate area is substantially augmented, resulting in a cell capacitance increase of at least approximately fifty percent compared to a conventional planar cell utilizing identical wafer area. The substrate is texturized by texturizing a thin polycrystalline silicon (poly) starter layer that has been deposited on top of the substrate by using an anisotropic etch or wet oxidation step, and then allowing the poly starter layer to be consumed, transferring the texture created on the poly starter layer to the underlying substrate. By subjecting the starter layer to either an etch or an oxidation step, atoms at the grain boundaries of the starter layer react more rapidly, thus establishing the texturization pattern. Once established, the starter layer's texturization pattern is transferred to the monocrystalline silicon surface by either etching or oxidizing the starter layer. Performing this texturization process multiple times produces greater texturization due to the consumption of the successive poly starter layers along their respective, uniquely superimposed grain boundaries.
摘要:
In one aspect of the invention, a semiconductor processing method includes: a) providing a semiconductor substrate; b) defining a first conductivity type region and a second conductivity type region of the semiconductor substrate; c) providing a first transistor gate over the first type region which defines a first source area and a first drain area operatively adjacent thereto; d) providing a second transistor gate over the second type region which defines a second source area and a second drain area operatively adjacent thereto; and e) blanket implanting a conductivity enhancing dopant of the second conductivity type through the first source and drain areas of the first conductivity region and the second source and drain areas of the second conductivity region to provide second conductivity type regular LDD implant regions within the substrate operatively adjacent the first transistor gate and to provide second conductivity type halo implant regions within the substrate operatively adjacent the second transistor gate. In another aspect, a semiconductor processing method includes: a) providing a semiconductor substrate; b) providing a transistor gate over the semiconductor substrate; c) providing spacers adjacent the transistor gate; d) providing electrically conductive source and drain implant regions within the substrate operatively adjacent the transistor gate; e) implanting a conductivity enhancing dopant into the previously formed electrically conductive source and drain regions; and f) driving the conductivity enhancing dopant under the spacers to form graded junction regions.