Abstract:
Targets, target elements and target design method are provided, which comprise designing a target structure to have a high contrast above a specific contrast threshold to its background in polarized light while having a low contrast below the specific contrast threshold to its background in non-polarized light. The targets may have details at device feature scale and be compatible with device design rules yet maintain optical contrast when measured with polarized illumination and thus be used effectively as metrology targets. Design variants and respective measurement optical systems are likewise provided.
Abstract:
Targets, target elements and target design method are provided, which comprise designing a target structure to have a high contrast above a specific contrast threshold to its background in polarized light while having a low contrast below the specific contrast threshold to its background in non-polarized light. The targets may have details at device feature scale and be compatible with device design rules yet maintain optical contrast when measured with polarized illumination and thus be used effectively as metrology targets. Design variants and respective measurement optical systems are likewise provided.
Abstract:
Scatterometry overlay targets as well as target design and measurement methods are provided, which mitigate the effects of grating asymmetries in diffraction based overlay measurements. Targets comprise additional cells with sub-resolved structures replacing resolved coarse pitch gratings and/or comprise alternating sub-resolved structures with coarse pitch periodicity—to isolate and remove inaccuracies that result from grating asymmetries. Measurement methods utilize orthogonally polarized illumination to isolate the grating asymmetry effects in different measurement directions, with respect to the designed target structures.
Abstract:
Methods and systems are provided, which pattern an illumination of a metrology target with respect to spectral ranges and/or polarizations, illuminate a metrology target by the patterned illumination, and measure radiation scattered from the target by directing, at a pupil plane, selected pupil plane pixels from a to respective single detector(s) by applying a collection pattern to the pupil plane pixels. Single detector measurements (compressive sensing) has increased light sensitivity which is utilized to pattern the illumination and further enhance the information content of detected scattered radiation with respect to predefined metrology parameters.
Abstract:
A method of monitoring overlay is used in a manufacturing process in which successive layers are deposited one over another to form a stack. Each layer may include a periodic structure such as a diffraction grating to be aligned with a periodic structure in another layer. The stacked periodic structures may be illuminated to form + and − first order diffraction patterns from the periodic structures. An image of the stacked periodic structures may be captured including + and − diffraction patterns. The + and − diffraction patterns may be compared to calculate the overlay between successive layers.
Abstract:
A method of monitoring overlay is used in a manufacturing process in which successive layers are deposited one over another to form a stack. Each layer may include a periodic structure such as a diffraction grating to be aligned with a periodic structure in another layer. The stacked periodic structures may be illuminated to form + and − first order diffraction patterns from the periodic structures. An image of the stacked periodic structures may be captured including + and − diffraction patterns. The + and − diffraction patterns may be compared to calculate the overlay between successive layers.
Abstract:
Angle-resolved reflectometers and reflectometry methods are provided, which comprise a coherent light source, an optical system arranged to scan a test pattern using a spot of coherent light from the light source to yield realizations of the light distribution in the collected pupil, wherein the spot covers a part of the test pattern and the scanning is carried out optically or mechanically according to a scanning pattern, and a processing unit arranged to generate a composite image of the collected pupil distribution by combining the pupil images. Metrology systems and methods are provided, which reduce diffraction errors by estimating, quantitatively, a functional dependency of measurement parameters on aperture sizes and deriving, from identified diffraction components of the functional dependency which relate to the aperture sizes, correction terms for the measurement parameters with respect to the measurement conditions.