摘要:
Resistors, semiconductor devices, and methods of manufacture thereof are disclosed. In one embodiment, a method of fabricating a resistor includes forming a semiconductive material over a workpiece, and patterning at least the semiconductive material, forming a gate of a transistor in a first region of the workpiece and forming a resistor in a second region of the workpiece. At least one substance is implanted into the semiconductive material of the gate of the transistor or the resistor so that the semiconductive material is different for the gate of the transistor and the resistor.
摘要:
A trench is formed in the surface of a provided semiconductor body. An oxide is deposited in the trench and a cap is deposited on the oxide, wherein the combination of the cap and the oxide impart a mechanical stress on the semiconductor body.
摘要:
A trench is formed in the surface of a provided semiconductor body. An oxide is deposited in the trench and a cap is deposited on the oxide, wherein the combination of the cap and the oxide impart a mechanical stress on the semiconductor body.
摘要:
A trench is formed in the surface of a provided semiconductor body. An oxide is deposited in the trench and a cap is deposited on the oxide, wherein the combination of the cap and the oxide impart a mechanical stress on the semiconductor body.
摘要:
A trench is formed in the surface of a provided semiconductor body. An oxide is deposited in the trench and a cap is deposited on the oxide, wherein the combination of the cap and the oxide impart a mechanical stress on the semiconductor body.
摘要:
In a method of making a semiconductor device, a recess is formed in an upper surface of the semiconductor body of a first material. An embedded semiconductor region is formed in the recess. The embedded semiconductor region is formed from a second semiconductor material that is different than the first semiconductor material. An upper surface of the embedded semiconductor region is amorphized to create an amorphous region. A silicide is then formed over the amorphous region.
摘要:
Semiconductor devices and methods of manufacturing thereof are disclosed. In a preferred embodiment, a method of manufacturing a semiconductor device includes providing a workpiece, and forming a recess in the workpiece. The recess has a depth having a first dimension. A first semiconductive material is formed in the recess to partially fill the recess in a central region to a height having a second dimension. The second dimension is about one-half or greater of the first dimension. A second semiconductive material is formed over the first semiconductive material in the recess to completely fill the recess, the second semiconductive material being different than the first semiconductive material.
摘要:
Semiconductor devices and methods of manufacturing thereof are disclosed. In a preferred embodiment, a method of manufacturing a semiconductor device includes providing a workpiece, and forming a recess in the workpiece. The recess has a depth having a first dimension. A first semiconductive material is formed in the recess to partially fill the recess in a central region to a height having a second dimension. The second dimension is about one-half or greater of the first dimension. A second semiconductive material is formed over the first semiconductive material in the recess to completely fill the recess, the second semiconductive material being different than the first semiconductive material.
摘要:
Disclosed herein is a method for evaluating scratch resistance of a plastic resin comprising scratching a surface of a test sample of plastic resin using a scratch apparatus to form a scratch of the surface having a scratch profile; scanning the scratched test sample with a surface profile analysis apparatus to measure the scratch profile; and creating a scratch resistance evaluation index based on the measured scratch profile to evaluate the scratch resistance of the test sample. The method has good reliability and reproducibility, reduces measurement time and errors caused by measurers and measuring conditions, provides easy measurement and can be widely applied to all plastic resins.
摘要:
A polymer composite material includes metal (oxide) nanoparticles chemically bonded to a vinyl polymer. Some embodiments may additionally comprise thermoplastic resin through which the nanoparticles and vinyl polymer are dispersed. In some embodiments, the composite materials have improved impact strength, tensile strength, heat resistance, and flexural modulus.