摘要:
A technique that, in an exhaust gas purification apparatus of an internal combustion engine, can avoid a decrease in a NOx purification rate by adding a reducing agent as continuously as possible, while avoiding NH3 from passing through a selective reduction type NOx catalyst to a downstream side thereof. The selective reduction type NOx catalyst has an active spot which purifies NOx by the use of NH3, and an adsorption site which adsorbs NH3, wherein a vicinity site, which is located in the vicinity of the active spot, and a distant site, which is located distant from the active spot, exist in the adsorption site. The addition of the reducing agent from the reducing agent addition part is controlled based on the desorption rate of NH3 in the vicinity site so as to continue to cause the NH3 adsorbed to the vicinity site to exist.
摘要:
An exhaust gas control apparatus includes a control device controlling a urea addition valve for adding urea from an upstream side of a NOx reduction catalyst. The control device obtains an ammonia adsorption amount distribution through the NOx reduction catalyst. When an ammonia adsorption amount in a predetermined part on a downstream side equals or exceeds a predetermined threshold, the control device controls the urea addition valve to stop the urea supply or reduce the amount thereof. The urea addition valve is controlled based on an adsorption amount distribution obtained from a model on which the catalyst is divided into cells such that an ammonia adsorption amount in a first cell positioned furthest upstream equals or exceeds a predetermined threshold close to a saturation adsorption amount and an ammonia adsorption amount in a second cell positioned downstream of the first cell reaches a predetermined target value smaller than the threshold.
摘要:
An exhaust gas control apparatus includes a control device controlling a urea addition valve for adding urea from an upstream side of a NOx reduction catalyst. The control device obtains an ammonia adsorption amount distribution through the NOx reduction catalyst. When an ammonia adsorption amount in a predetermined part on a downstream side equals or exceeds a predetermined threshold, the control device controls the urea addition valve to stop the urea supply or reduce the amount thereof. The urea addition valve is controlled based on an adsorption amount distribution obtained from a model on which the catalyst is divided into cells such that an ammonia adsorption amount in a first cell positioned furthest upstream equals or exceeds a predetermined threshold close to a saturation adsorption amount and an ammonia adsorption amount in a second cell positioned downstream of the first cell reaches a predetermined target value smaller than the threshold.
摘要:
A technique that, in an exhaust gas purification apparatus of an internal combustion engine, can avoid a decrease in a NOx purification rate by adding a reducing agent as continuously as possible, while avoiding NH3 from passing through a selective reduction type NOx catalyst to a downstream side thereof. The selective reduction type NOx catalyst has an active spot which purifies NOx by the use of NH3, and an adsorption site which adsorbs NH3, wherein a vicinity site, which is located in the vicinity of the active spot, and a distant site, which is located distant from the active spot, exist in the adsorption site. The addition of the reducing agent from the reducing agent addition part is controlled based on the desorption rate of NH3 in the vicinity site so as to continue to cause the NH3 adsorbed to the vicinity site to exist.
摘要:
The purpose of the present invention is to suppress degradation of a PM sensor and a decrease in detection accuracy of the amount of PM in a configuration in which a urea addition unit and a selective reduction-type NOx catalyst (NOx catalyst) are provided downstream of a particulate filter (filter) in an internal corn engine exhaust passage, the PM sensor being disposed downstream of the filter. According to the present invention, in an exhaust passage (2) of an internal combustion engine (1), a first NOx catalyst (4) and a second NOx catalyst (5) are disposed downstream of a fitter (3) successively from the upstream side along the flow of exhaust. A urea addition unit (6) is disposed between the filter (3) and the first NOx catalyst (4). A PM sensor (7) is disposed between the first NOx catalyst (4) and the second NOx catalyst (5).
摘要:
The purpose of the present invention is to suppress degradation of a PM sensor and a decrease in detection accuracy of the amount of PM in a configuration in which a urea addition unit and a selective reduction-type NOx catalyst (NOx catalyst) are provided downstream of a particulate filter (filter) in an internal combustion engine exhaust passage, the PM sensor being disposed downstream of the filter. According to the present invention, in an exhaust passage (2) of an internal combustion engine (1), a first NOx catalyst (4) and a second NOx catalyst (5) are disposed downstream of a filter (3) successively from the upstream side along the flow of exhaust. A urea addition unit (6) is disposed between the filter (3) and the first NOx catalyst (4). A PM sensor (7) is disposed between the first NOx catalyst (4) and the second NOx catalyst (5).
摘要:
An exhaust gas purification system is equipped with a burner in an exhaust passage upstream of an exhaust gas purification apparatus and having a burner combustion chamber in which flame is produced. When the temperature of the exhaust gas purification apparatus is raised, the burner produces flame that extends from the interior of the burner combustion chamber to the interior of the exhaust passage when the flow rate of the exhaust gas is not higher than a predetermined flow rate, and the burner causes the size of the flame to be smaller than when it is determined that the flow rate of the exhaust gas is not higher than the predetermined flow rate or to produce flame only in the interior of the burner combustion chamber when it is determined that the flow rate of exhaust gas is higher than the predetermined flow rate.
摘要:
An exhaust gas purification system is equipped with a burner in an exhaust passage upstream of an exhaust gas purification apparatus and having a burner combustion chamber in which flame is produced. When the temperature of the exhaust gas purification apparatus is raised, the burner produces flame that extends from the interior of the burner combustion chamber to the interior of the exhaust passage when the flow rate of the exhaust gas is not higher than a predetermined flow rate, and the burner causes the size of the flame to be smaller than when it is determined that the flow rate of the exhaust gas is not higher than the predetermined flow rate or to produce flame only in the interior of the burner combustion chamber when it is determined that the flow rate of exhaust gas is higher than the predetermined flow rate.
摘要:
Utilizing the finding that the state of adsorption of NH3 on a selective reduction type NOx catalyst includes a weakly adsorbed state in which the adsorbed NH3 is useful for a reduction reaction of NOx and a strongly adsorbed state in which the adsorbed NH3 is not useful for the reduction reaction of NOx unless the state of adsorption is changed into the weakly adsorbed state, the apparatus of the invention includes an actual weakly-adsorbed amount-calculation NH3 that is adsorbed on the selective reduction type NOx catalyst in the weakly adsorbed state, and a dispensation control portion that performs a dispensation control of the reductant dispensed by a reductant-dispensation portion, according to the actual weakly adsorbed amount calculated by the actual weakly adsorbed amount calculation portion.
摘要:
An object of the present invention is to increase the flexibility in the layout of an exhaust gas purification system for an internal combustion engine including selective catalytic reduction catalyst provided in an exhaust passage of the internal combustion engine and an addition device for supplying reducing agent derived from ammonia to the selective catalytic reduction catalyst, without a deterioration of the performance in reducing nitrogen oxides. To achieve the object, the exhaust gas purification system for an internal combustion engine according to the present invention is configured to supply hydrocarbon at the same time when reducing agent derived from ammonia is supplied to the selective catalytic reduction catalyst, thereby producing reducing agent that is hard to be oxidized by a precious metal catalyst.