摘要:
The purpose of the present invention is to suppress degradation of a PM sensor and a decrease in detection accuracy of the amount of PM in a configuration in which a urea addition unit and a selective reduction-type NOx catalyst (NOx catalyst) are provided downstream of a particulate filter (filter) in an internal combustion engine exhaust passage, the PM sensor being disposed downstream of the filter. According to the present invention, in an exhaust passage (2) of an internal combustion engine (1), a first NOx catalyst (4) and a second NOx catalyst (5) are disposed downstream of a filter (3) successively from the upstream side along the flow of exhaust. A urea addition unit (6) is disposed between the filter (3) and the first NOx catalyst (4). A PM sensor (7) is disposed between the first NOx catalyst (4) and the second NOx catalyst (5).
摘要:
An internal combustion engine in an engine exhaust passage of which an exhaust purification catalyst (13) having an oxidation function is arranged and in the engine exhaust passage upstream of the exhaust purification catalyst (13) of which a small-sized oxidation catalyst (14) and a fuel feed valve (15) for feeding fuel to the small-sized oxidation catalyst (14) are arranged. When activating the exhaust purification catalyst (13), the fuel fed from the fuel injector (15) is used to heat the small-sized oxidation catalyst (14) and when the exhaust purification catalyst (13) is further raised in temperature, the fuel fed from the fuel feed valve (15) is increased and reformed fuel is exhausted from the small-sized oxidation catalyst (14).
摘要:
When performing temperature elevation control at a first exhaust purification device, a second exhaust purification device is prevented from being raised in temperature to a set temperature or more.
摘要:
An SOX trap catalyst (11) in which at least one of an alkali metal and alkali earth metal is carried diffused is arranged in an exhaust passage of an internal combustion engine. By holding the temperature of the SOX trap catalyst (11) during engine operation at the temperature where a nitrate of the at least one of the alkali metal and alkali earth metal becomes the melted state, a nitrate movement and coagulation action where the nitrate in the SOX trap catalyst (11) moves to and coagulates at the surface of the SOX trap catalyst (11) is promoted. Due to this nitrate movement and coagulation action, SOX is removed while restoring the SOX trap rate.
摘要:
In an internal combustion engine, an NOx selective reducing catalyst is arranged inside an engine exhaust passage, an oxidation catalyst is arranged upstream of the NOx selective reducing catalyst, and an NOx adsorption catalyst is arranged upstream of the oxidation catalyst. The NOx adsorption catalyst has a property of releasing NOx when the temperature rises and a property of trapping the SOx contained in the exhaust gas. The inflow of SOx into the oxidation catalyst is suppressed by the NOx adsorption catalyst to prevent the NO released from the NOx adsorption catalyst being oxidized to NO2 at the oxidation catalyst from being obstructed by SOx.
摘要:
In an exhaust gas purification system for an internal combustion engine, a NOx selective reduction catalyst for reducing NOx with ammonia that is adsorbed on the NOx selective reduction catalyst is disposed in an exhaust passage of the engine. In the NOx selective reduction catalyst, ammonia in a first adsorption state that is adsorbed at a low temperature and ammonia in a second adsorption state that is adsorbed at a high temperature are present. Because ammonia, which has been in the first adsorption state and which is desorbed from the NOx selective reduction catalyst, tends to be discharged to the atmosphere, a control section that estimates an adsorption amount of ammonia in the first adsorption state is provided in the exhaust gas purification system for the internal combustion engine in order to control the adsorption amount of ammonia in the first adsorption state within a specified level.
摘要:
In an exhaust purification system of an internal combustion engine comprising an exhaust purification device which receives a bad influence from SOX in the exhaust gas and a S trap device arranged upstream of the exhaust purification device, which can store SOX in the exhaust gas, an amount of SOX passing through the S trap device is integrated as an integrated value, each allowance value of the integrated value for each elapsed period from the start time of the use of the S trap device is set, and when the current integrated value exceeds the corresponding allowance value and between a first set period ago and the current time, fuel has been supplied into the fuel tank and engine oil has not been exchanged, it is determined that fuel with a high concentration of sulfur has been supplied into the fuel tank.
摘要:
A fuel adding valve (14), an HC adsorbing and oxidation catalyst (11), and a NOx storing catalyst (12) are successively arranged in an exhaust passage of an internal combustion engine toward the downstream side. When the NOx storing catalyst (12) should release NOx, particulate fuel is added from the fuel adding valve (14). This fuel is adsorbed once at the HC adsorbing and oxidation catalyst (11), then gradually evaporates to make the air-fuel ratio of the exhaust gas flowing into the NOx storing catalyst (12) rich. Due to this, NOx is released from the NOx storing catalyst (12).
摘要:
In an internal combustion engine, the engine is formed so that an output of an electric motor can be superposed on an output of the engine. An SOX trap catalyst able to trap the SOX contained in the exhaust gas is arranged inside the engine exhaust passage upstream of the NOX storage catalyst. The vehicle drive power from the engine and the vehicle drive power from the electric motor are adjusted so that the SOX trap rate of the SOX trap catalyst is maintained at a predetermined high SOX trap rate.
摘要:
An internal combustion engine in which a front end catalyst (12) and rear end catalyst (14) comprising NOx storing catalysts are arranged in an engine exhaust passage. When these catalysts (12, 14) should recover from SOx poisoning, SOx poisoning recovery proceeding is performed in which the temperatures of the corresponding catalysts (12, 14) are raised to the SOx release temperature and the air-fuel ratio of the exhaust gas flowing into the corresponding catalysts (12, 14) is made rich. In this case, the frequency of performing the SOx poisoning recovery proceeding of the rear end catalyst (14) is made higher than the frequency of performing the SOx poisoning recovery proceeding of the front end catalyst (12).