摘要:
Split-gate non-volatile memory (NVM) cells having gap protection zones are disclosed along with related manufacturing methods. After formation of a gate for a split-gate NVM cell over a substrate, a doped region is formed adjacent the gate. A first portion of the doped region is then removed to leave a second portion of the doped region that forms a gap protection zone adjacent the gate. For some disclosed embodiments, a select gate is formed before a control gate. For other disclosed embodiments, the control gate is formed before the select gate. The gap protection zones can be formed, for example, using an etch processing step to remove the desired portions of the doped region, and a spacer can also be used to protect the gap protection zone during this etch processing step. Related NVM systems are also disclosed.
摘要:
A first transistor and a second transistor are formed with different threshold voltages. A first gate is formed over the first region of a substrate for a first transistor and a second gate over the second region for a second transistor. The first region is masked. A threshold voltage of the second transistor is adjusted by implanting through the second gate while masking the first region. Current electrode regions are formed on opposing sides of the first gate and current electrode regions on opposing sides of the second gate.
摘要:
A first transistor and a second transistor are formed with different threshold voltages. A first gate is formed over the first region of a substrate for a first transistor and a second gate over the second region for a second transistor. The first region is masked. A threshold voltage of the second transistor is adjusted by implanting through the second gate while masking the first region. Current electrode regions are formed on opposing sides of the first gate and current electrode regions on opposing sides of the second gate.
摘要:
Split-gate non-volatile memory (NVM) cells having gap protection zones are disclosed along with related manufacturing methods. After formation of a gate for a split-gate NVM cell over a substrate, a doped region is formed adjacent the gate. A first portion of the doped region is then removed to leave a second portion of the doped region that forms a gap protection zone adjacent the select gate. For some disclosed embodiments, a select gate is formed before a control gate for the split-gate NVM cell. For other disclosed embodiments, the control gate is formed before the select gate for the split-gate NVM cell. The gap protection zones can be formed, for example, using an etch processing step to remove the desired portions of the doped region, and a spacer can also be used to protect the gap protection zone during this etch processing step. Related NVM systems are also disclosed.
摘要:
A method of making a semiconductor device on a semiconductor layer is provided. The method includes: forming a select gate dielectric layer over the semiconductor layer; forming a select gate layer over the select gate dielectric layer; and forming a sidewall of the select gate layer by removing at least a portion of the select gate layer. The method further includes growing a sacrificial layer on at least a portion of the sidewall of the select gate layer and under at least a portion of the select gate layer and removing the sacrificial layer to expose a surface of the at least portion of the sidewall of the select gate layer and a surface of the semiconductor layer under the select gate layer. The method further includes forming a control gate dielectric layer, a charge storage layer, and a control gate layer.
摘要:
A method of making a semiconductor device on a semiconductor layer is provided. The method includes: forming a select gate dielectric layer over the semiconductor layer; forming a select gate layer over the select gate dielectric layer; and forming a sidewall of the select gate layer by removing at least a portion of the select gate layer. The method further includes growing a sacrificial layer on at least a portion of the sidewall of the select gate layer and under at least a portion of the select gate layer and removing the sacrificial layer to expose a surface of the at least portion of the sidewall of the select gate layer and a surface of the semiconductor layer under the select gate layer. The method further includes forming a control gate dielectric layer, a charge storage layer, and a control gate layer.
摘要:
A method of making a semiconductor device on a semiconductor layer includes: forming a gate dielectric over the semiconductor layer; forming a layer of gate material over the gate dielectric; etching the layer of gate material to form a select gate; forming a storage layer that extends over the select gate and over a portion of the semiconductor layer; depositing an amorphous silicon layer over the storage layer; etching the amorphous silicon layer to form a control gate; and annealing the semiconductor device to crystallize the amorphous silicon layer.
摘要:
A semiconductor device (10) is formed in a semiconductor layer (12). A gate stack (16,18) is formed over the semiconductor layer and comprises a first conductive layer (22) and a second layer (24) over the first layer. The first layer is more conductive and provides more stopping power to an implant than the second layer. A species (46) is implanted into the second layer. Source/drain regions (52) are formed in the semiconductor layer on opposing sides of the gate stack. The gate stack is heated after the step of implanting to cause the gate stack to exert stress in the semiconductor layer in a region under the gate stack.
摘要:
A method of making a split gate non-volatile memory (NVM) includes forming a charge storage layer on the substrate, depositing a first conductive layer, and depositing a capping layer. These layers are patterned to form a control gate stack. A second conductive layer is deposited over the substrate and is patterned to leave a first portion of the second conductive layer over a portion of the control gate stack and adjacent to a first side of the control gate stack. The first portion of the second conductive layer and the control gate stack are planarized to leave a dummy select gate from the first portion of the second conductive layer, where a top surface of a remaining portion of the first conductive layer is lower relative to a top surface of the dummy select gate. The dummy select gate is replaced with a select gate including metal.
摘要:
A method of making a non-volatile memory cell includes forming a plurality of discrete storage elements. A tensile dielectric layer is formed among the discrete storage elements and provides lateral tensile stress to the discrete storage elements. A gate is formed over the discrete storage elements.