Abstract:
A spin control electronic device operable at room temperature according to an embodiment of the present invention includes a transfer channel that includes a low-dimensional nanostructure, the nanostructure being located on a substrate, having an elongate shape in a first direction and having a cross section, cut along a second direction that is perpendicular to the first direction, in the shape of a triangle; a source electrode located on the substrate and intersecting the transfer channel, the source electrode covering part of the transfer channel; and a drain electrode spaced apart from the source electrode on the substrate, the drain electrode intersecting the transfer channel and covering part of the transfer channel.
Abstract:
A non-volatile reconfigurable logic device executing logical operations and a memory function and controlled by a magnetic field is provided. The reconfigurable logic device includes i) at least one semiconductor device; and ii) a pair of magnetic field controlled devices respectively spaced apart from both sides of the semiconductor device and that are adapted to generate magnetic field leakage to control the semiconductor device. The semiconductor device includes i) a first semiconductor layer; and ii) a second semiconductor layer located on the first semiconductor layer. One of the first semiconductor layer and the second semiconductor layer is a p-type semiconductor layer and the other is an n-type semiconductor layer.
Abstract:
A complementary device including a gate electrode, a channel, a source electrode connected to the gate electrode and the channel, and a first drain electrode and a second drain electrode connected to the gate electrode and the channel is provided. The first/second drain electrode is formed so that, in accordance with a voltage applied to the gate electrode, electron spins injected into the source electrode are moved from the source electrode to the first/second drain electrode through the channel while rotating in a first/second direction. Directions of the electron spins that reach the first drain electrode and the second drain electrode are opposite to each other.
Abstract:
A complementary logic device includes: an insulating layer formed on a substrate; a source electrode formed of a ferromagnetic body on the insulating layer; a gate insulating film; a gate electrode formed on the gate insulating film and controlling a magnetization direction of the source electrode; a channel layer formed on each of a first side surface and a second side surface of the source electrode and transmitting spin-polarized electrons from the source electrode; a first drain electrode formed on the first side surface of the source electrode; and a second drain electrode formed on the second side surface of the source electrode, wherein a magnetization direction of the first drain electrode and a magnetization direction of the second drain electrode are antiparallel to each other. Therefore, not only characteristics of low power and high speed but also characteristics of non-volatility and multiple switching by spin may be obtained.