Abstract:
Disclosed is a zinc oxide-based quantum dot aggregate capable of emitting white light is a mixture of a zinc oxide quantum dot and a zinc oxide-graphene quantum dot, in which the zinc oxide quantum dot emits yellow light when being irradiated with an excitation wavelength shorter than a wavelength corresponding to an energy band gap of the zinc oxide quantum dot, the zinc oxide-graphene quantum dot is in a form in which a zinc oxide quantum dot is bound with graphene via a Zn—O—C bond and emits blue-based light, and white light emission is possible through color rendering of yellow light emission by the zinc oxide quantum dot and blue-based light emission by the zinc oxide-graphene quantum dot.
Abstract:
The present disclosure relates to a method of growing a graphene nanopowder having a size of 10 nm or less into a graphene sheet having a seed size or more by using a graphene nanopowder as a seed. Further, in the present disclosure, a graphite sheet in which 2 to 20 layers of the graphene sheet are laminated may be prepared. The carbon sheet (that is, graphene and graphite sheets) may be prepared by preparing a graphene nanopowder (randomly distributed) on a substrate, and then subjecting the substrate to CVD treatment using a gas including a hydrocarbon gas in a chemical deposition apparatus.
Abstract:
Disclosed is a manganese tin oxide-based transparent conducting oxide (TCO) with an optimized composition, which has low surface roughness, low sheet resistance and high transmittance even when deposited at room temperature, a multilayer transparent conductive film using the same and a method for fabricating the same. The manganese tin oxide-based transparent conducting oxide has a composition of MnxSn1-xO (0
Abstract translation:公开了一种具有优化组成的锰锡氧化物基透明导电氧化物(TCO),其即使在室温下沉积时也具有低的表面粗糙度,低的薄层电阻和高透射率,使用其的多层透明导电膜和 制作相同。 锰氧化锡系透明导电氧化物具有Mn x Sn 1-x O(0
Abstract:
Provided are a method of manufacturing multi-layered thin films, multi-layered thin films formed by the same, a method of manufacturing an organic thin film transistor including the same, and an organic thin film transistor manufactured by the same. The method of manufacturing multi-layered thin films includes: preparing a substrate; printing a blend solution including an organic semiconductor, an insulating polymer, and a solvent on the substrate; and simultaneously forming an insulating polymer thin film and an organic semiconductor thin film on the insulating polymer thin film by using a vertical phase separation phenomenon of the organic semiconductor and the insulating polymer, in which according to contents of the organic semiconductor and the insulating polymer in the blend solution and a printing speed of the blend solution, a width of the organic semiconductor thin film, and a thickness of the insulating polymer thin film are controlled.
Abstract:
Disclosed is a light emitting diode using zinc oxide-aminopyrene core-shell quantum dots capable of improving the purity of blue light emission and securing long lifetime through the characteristic that emission transition of electrons proceeds in aminopyrene by applying the zinc oxide-aminopyrene quantum dots forming a core-shell structure with zinc oxide(ZnO) and 1-aminopyrene to the light emitting diode. The light emitting diode using the zinc oxide-aminopyrene core-shell quantum dots comprises a bule light-emitting layer of the ZnO@1-aminopyrene quantum dots having a core-shell structure in which ZnO quantum dots form a core, and 1-aminopyrene forms a shell.
Abstract:
Disclosed are a flexible transparent electrode structure, a method for preparing the same, and an organic optoelectronic device using the same. The flexible transparent electrode structure includes: a flexible substrate; a thin film laminate of a triple-layer structure formed on both sides of the flexible substrate; and a transparent electrode formed on the thin film laminate of a triple-layer structure provided on one side of the flexible substrate, wherein the thin film laminate of a triple-layer structure includes a SiNx thin film, a SiOxNy thin film and a SiOx thin film formed sequentially on the flexible substrate. The flexible transparent electrode structure has superior light transmittance, water permeation resistance and oxygen permeation resistance, which can improve the electrical properties of an organic optoelectronic device.
Abstract:
A p-type transparent oxide semiconductor includes tin oxide compounds represented by below chemical formula 1: Sn1-xMxO2 [Chemical Formula 1] wherein, in the chemical formula 1, the M is tri-valent metal and the X is a real number of 0.01˜0.05. The p-type transparent oxide semiconductor is applicable to active semiconductor devices such as TFT-LCD and transparent solar cell, due to excellent electrical and optical properties and shows superior properties in aspects of visible light transmittance (T), carrier mobility (μ) and rectification ratio as well as transparency.
Abstract:
A method of manufacturing a thin-film transistor is provided, including preparing ink including a solution in which a graphene oxide, a reduced graphene oxide, or a combination thereof is dispersed, forming the ink on a substrate in the form of a pattern, and forming a source electrode and a drain electrode that are positioned at edges of the pattern and a semiconductor channel positioned between the electrodes by a coffee-ring effect in the ink by using the graphene oxide, the reduced graphene oxide, or the combination thereof within the formed pattern.