摘要:
A light-emitting element includes a semiconductor laminated structure including a first semiconductor layer, a light-emitting layer and a second semiconductor layer, an insulation layer provided on the semiconductor laminated structure, a first wiring including a first vertical conducting portion and a first planar conducting portion and being electrically connected to the first semiconductor layer, the first vertical conducting portion extending inside the insulation layer, the light-emitting layer and the second semiconductor layer in a vertical direction and the first planar conducting portion extending inside the insulation layer in a planar direction, and a second wiring including a second vertical conducting portion and a second planar conducting portion and being electrically connected to the second semiconductor layer, the second vertical conducting portion extending inside the insulation layer in a vertical direction and the second planar conducting portion extending inside the insulation layer in a planar direction.
摘要:
A light-emitting element includes a semiconductor laminated structure including a first semiconductor layer, a light-emitting layer and a second semiconductor layer, an insulation layer provided on the semiconductor laminated structure, a first wiring including a first vertical conducting portion and a first planar conducting portion and being electrically connected to the first semiconductor layer, the first vertical conducting portion extending inside the insulation layer, the light-emitting layer and the second semiconductor layer in a vertical direction and the first planar conducting portion extending inside the insulation layer in a planar direction, and a second wiring including a second vertical conducting portion and a second planar conducting portion and being electrically connected to the second semiconductor layer, the second vertical conducting portion extending inside the insulation layer in a vertical direction and the second planar conducting portion extending inside the insulation layer in a planar direction.
摘要:
In a flip chip type light-emitting element of the present invention, an n type contact electrode 14 is formed on an n layer 11 exposed in a comb-tooth shape, a light transmission electrode 15 made of an ITO is formed over the entire surface of an upper surface of a p layer 13 and twenty pad electrodes 16 are formed at prescribed intervals on the light transmission electrode 15. The plane form of the pad electrode 16 has four branches 16b protruding in the form of a cross from a circular central part 16a and the adjacent pad electrodes 16 connected to each other by the branches 16b.
摘要:
In a flip chip type light-emitting element of the present invention, an n type contact electrode 14 is formed on an n layer 11 exposed in a comb-tooth shape, a light transmission electrode 15 made of an ITO is formed over the entire surface of an upper surface of a p layer 13 and twenty pad electrodes 16 are formed at prescribed intervals on the light transmission electrode 15. The plane form of the pad electrode 16 has four branches 16b protruding in the form of a cross from a circular central part 16a and the adjacent pad electrodes 16 connected to each other by the branches 16b.
摘要:
The present invention provides a Group III nitride semiconductor light-emitting device exhibiting high-intensity light output in a specific direction and improved light extraction performance. The Group III nitride semiconductor light-emitting device comprises a sapphire substrate, and a layered structure having a light-emitting layer provided on the sapphire substrate and formed of a Group III nitride semiconductor. On the surface on the layered structure side of the sapphire substrate, a two-dimensional periodic structure of mesas is formed with a period which generates a light intensity interference pattern for the light emitted from the light-emitting layer. The light reflected by or transmitted through the two-dimensional periodic structure has an interference pattern. Therefore, the light focused on a region where the light intensity is high in the interference pattern can be effectively output to the outside, resulting in the improvement of light extraction performance as well as the achievement of desired directional characteristics.
摘要:
A light emitting element includes a first electrode, a second electrode formed on a same side as the first electrode and including an area less than the first electrode, a first bump formed on the first electrode, and a second bump formed on the second electrode and including a level at a top thereof higher than that of the first bump. A flip-chip type light emitting element includes a spreading electrode, the spreading electrode including an extended part, and plural intermediate electrodes formed on the spreading electrode and arranged in a longitudinal direction of the extended part and centrally in a width direction of the extended part. The intermediate electrodes are disposed such that a distance of half a pitch thereof in the longitudinal direction is equal to or shorter than a distance from one of the intermediate electrodes to an edge of the extended part.
摘要:
The present invention provides a Group III nitride semiconductor light-emitting device exhibiting high-intensity light output in a specific direction and improved light extraction performance. The Group III nitride semiconductor light-emitting device comprises a sapphire substrate, and a layered structure having a light-emitting layer provided on the sapphire substrate and formed of a Group III nitride semiconductor. On the surface on the layered structure side of the sapphire substrate, a two-dimensional periodic structure of mesas is formed with a period which generates a light intensity interference pattern for the light emitted from the light-emitting layer. The light reflected by or transmitted through the two-dimensional periodic structure has an interference pattern. Therefore, the light focused on a region where the light intensity is high in the interference pattern can be effectively output to the outside, resulting in the improvement of light extraction performance as well as the achievement of desired directional characteristics.
摘要:
A light emitting element includes a first electrode, a second electrode formed on a same side as the first electrode and including an area less than the first electrode, a first bump formed on the first electrode, and a second bump formed on the second electrode and including a level at a top thereof higher than that of the first bump. A flip-chip type light emitting element includes a spreading electrode, the spreading electrode including an extended part, and plural intermediate electrodes formed on the spreading electrode and arranged in a longitudinal direction of the extended part and centrally in a width direction of the extended part. The intermediate electrodes are disposed such that a distance of half a pitch thereof in the longitudinal direction is equal to or shorter than a distance from one of the intermediate electrodes to an edge of the extended part.
摘要:
To improve light emission efficiency and reliability.A transparent conductive film 10 is formed on an entire top surface of a second semiconductor layer 108, and a photo-resist is applied thereon. When removing the photo-resist on the upper surface corresponding to an electrode forming part 16 of a first semiconductor layer 104, the photo-resist is removed to be gradually thinned at a boundary of a portion to be removed. The transparent conductive film is wet etched using the remaining photo-resist as a mask to expose a part of the second semiconductor layer. Dry etching is performed using the remaining photo-resist and the transparent conductive film as a mask to expose the electrode forming part of the first semiconductor layer. A portion of the transparent conductive film exposed in the dry etching using the remaining photo-resist as a mask is wet etched. The remaining photo-resist is eliminated.
摘要:
In a Group III nitride compound semiconductor light-emitting device which outputs lights from a semiconductor plane, about 1.5 μm in height of a Group III nitride compound semiconductor projection part 150, which is made of Mg-doped p-type GaN having Mg doping concentration of 8×1019/cm3 and is formed through selective growth, is formed on a p-type contact layer (second p-layer) 108. And a light-transparency electrode 110 is formed thereon through metal deposition. The Group III nitride compound semiconductor projection part 150 makes a rugged surface for outputting lights and actual critical angle is widened, which enables to improve luminous outputting efficiency. And because etching is not employed to form the ruggedness, driving voltage does not increase.
摘要翻译:在从具有Mg掺杂的Mg掺杂的p型GaN制成的III族氮化物化合物半导体投影部150的半导体平面的高度为1.5μm的III族氮化物化合物半导体发光装置中, 8×10 9 / cm 3,并且通过选择性生长形成,形成在p型接触层(第二p层)108上。 并且通过金属沉积在其上形成透光性电极110。 III族氮化物化合物半导体投影部150形成用于输出光的坚固的表面,并且实际临界角被加宽,这能够提高发光效率。 并且由于不采用蚀刻来形成耐磨性,所以驱动电压不增加。