摘要:
A tubular combustion chamber including a tubular combustion chamber whose front-end is open; and, fuel-gas spraying nozzles and oxygen-containing-gas spraying nozzles, for spraying a fuel and an oxygen-containing-gas separately and individually, or for spraying a premixed gas; wherein respective orifices of the respective nozzles face toward an inner surface of the combustion chamber, so as to spray the fuel-gas and the oxygen-containing-gas in a neighborhood of a tangential direction of an inner circumferential wall of the. combustion chamber; wherein the tubular flame burner is a multi-stage tubular burner that is unified in a body, by using a plurality of the tubular flame burners, and by connecting the front-end of the tubular flame burner with a smaller inner diameter of the combustion chamber into the rear-end of the tubular flame burner with a greater inner diameter of the combustion chamber.
摘要:
A tubular combustion chamber including a tubular combustion chamber whose front-end is open; and, fuel-gas spraying nozzles and oxygen-containing-gas spraying nozzles, for spraying a fuel and an oxygen-containing-gas separately and individually, or for spraying a premixed gas; wherein respective orifices of the respective nozzles face toward an inner surface of the combustion chamber, so as to spray the fuel-gas and the oxygen-containing-gas in a neighborhood of a tangential direction of an inner circumferential wall of the combustion chamber; wherein the tubular flame burner is a multi-stage tubular burner that is unified in a body, by using a plurality of the tubular flame burners, and by connecting the front-end of the tubular flame burner with a smaller inner diameter of the combustion chamber into the rear-end of the tubular flame burner with a greater inner diameter of the combustion chamber.
摘要:
A tubular flame burner including a tubular combustion chamber having two ends, wherein one end is an open front-end and the other end is a rear-end to which an ignition device is mounted; and fuel-gas spraying nozzles and oxygen-containing-gas spraying nozzles, wherein respective orifices of the respective nozzles face toward an inner surface of the combustion chamber, so as to spray a fuel-gas and an oxygen-containing-gas in a neighborhood of a tangential direction of an inner circumferential wall of the combustion chamber; wherein an ignition device is disposed at a position between a point of a tube axis extending along a longitudinal direction of the combustion chamber, and a point of an axis apart away, by ½ of a radius of the combustion chamber, from the point of the tube axis along a cross-sectional direction orthogonal to the longitudinal direction.
摘要:
A tubular flame burner, a combustion method, and combustion controller, are disclosed. Here, the tubular flame burner comprises: a tubular combustion chamber whose h one end is open; fuel-spraying nozzles and oxygen-containing-gas spraying nozzles. The respective nozzle orifices are formed in the inner face of the combustion chamber so that each spraying direction is in a neighborhood of a tangential direction of the inner circumferential wall of the combustion chamber. And an ignition device is disposed at a position r/2 from the tube axis of the combustion chamber (r: the radius of the combustion chamber). The length of the combustion chamber can be adjusted, the tubular flame burner is a multi-stage burner formed of multiple tubular flame burners, and a gap between the inner tube and the outer tube serves as a gas-flow path. A combustion control method for the tubular flame burner is disclosed, wherein on/off of switching valves is controlled so that the spraying speed from each nozzle is maintained in a predetermined range corresponding to the combustion load.
摘要:
A tubular flame burner, a combustion method, and combustion controller, are disclosed. Here, the tubular flame burner comprises: a tubular combustion chamber whose h one end is open; fuel-spraying nozzles and oxygen-containing-gas spraying nozzles. The respective nozzle orifices are formed in the inner face of the combustion chamber so that each spraying direction is in a neighborhood of a tangential direction of the inner circumferential wall of the combustion chamber. And an ignition device is disposed at a position r/2 from the tube axis of the combustion chamber (r: the radius of the combustion chamber). The length of the combustion chamber can be adjusted, the tubular flame burner is a multi-stage burner formed of multiple tubular flame burners, and a gap between the inner tube and the outer tube serves as a gas-flow path. A combustion control method for the tubular flame burner is disclosed, wherein on/off of switching valves is controlled so that the spraying speed from each nozzle is maintained in a predetermined range corresponding to the combustion load.
摘要:
A production method for a display panel according to the present invention is production method for a display panel 100 including a display panel 101 and a plurality of microlenses 107 provided on a light-incident side of the display panel 101, including: (a) a step of providing a display panel having a plurality of pixels in a matrix arrangement, wherein each of the plurality of pixels has a plurality of picture elements, including a first picture element 104B transmitting first color light and a second picture element 104R (104G) transmitting second color light which is different from the first color light; (b) a step of forming a photocurable material layer 105 on one of a pair of principal faces, being opposite to each other, of the display panel; (c) a step of exposing the photocurable material layer to light via the display panel, wherein the photocurable material layer is at least partially cured with light which has been transmitted through at least the first picture element; and (d) a step of removing an uncured portion of the photocurable material layer 105′ having been exposed to light, thereby forming a plurality of microlenses 107.
摘要:
A laser processing method includes the steps of irradiating a projection mask having a light transmitting area, for allowing a laser beam to be transmitted therethrough, with the laser beam; and irradiating a processing target with the laser beam transmitted through the light transmitting area. A spot of the laser beam on the projection mask is shaped so as to irradiate a portion in the vicinity of first edges of the light transmitting area, the first edges extending in one direction, and so as not to irradiate a portion in the vicinity of second edges of the light transmitting area, the second edges extending in a second direction which is different from the first direction.
摘要:
A mode splitter and the magneto-optical pick-up device including the mode splitter are provided. The mode splitter includes a tapered waveguide portion whose thickness gradually becomes thin so that a light of at least one mode can be cut off. An emission position of a light wave can be varied depending on its mode. In this mode splitter, the emission position of the light wave of each mode can be adjusted by changing a thickness of the tapered waveguide, thereby improving the degree of freedom in designing the device.
摘要:
A process for producing a liquid crystal display panel with microlens, including: the step of preparing a liquid crystal display panel; forming a resin layer of uncured photo-curing resin, on a surface of a first transparent substrate of the liquid crystal display panel; irradiating a plurality of pixels with light having a property of curing the resin layer with varying incident angle, and partially exposing the resin layer by the light passed through a first sub-pixel; and following the exposure step, the step of development of removing an uncured portion of the resin layer; wherein the exposure step is performed such that the cured portion has a shape of cylindrical microlens, and maximum thickness of the cured portion becomes equal to the thickness of the resin layer.
摘要:
In a micro-lens array substrate (12) that includes first and second micro-lens arrays (6, 7) respectively having a plurality of lenses, the first micro-lens array (6) is sandwiched between two inorganic dielectric substrates (21, 24), and the second micro-lens array (7) is formed on one of the two inorganic dielectric substrates (21, 24).