摘要:
A picture image distributing apparatus provided within a passenger moving vehicle, consists of: a head end portion for multichannel FDM picture image signals; an electrical optical for converting the FDM picture image signals into optical signals; an optical amplifier for optically amplifying the optical outputs; one optical fiber transmission path connected to optical taps of unequal distribution for branching halfway on one portion of the optical power except for the branching at a final point, an optical/electrical converter for receiving optical signals branched at the final point or halfway so as to convert them into electrical signals; and a passenger seat picture image receiving terminal connected to the optical/electrical converter so as to receive the electrical signals.
摘要:
A signal processing circuit 113 subjects a transmission signal outputted from a signal source 111 and a carrier outputted from a carrier generation circuit 112 to predetermined signal processing, to generate a modulation signal amplitude-modulated by the transmission signal and so adapted that its envelop on the high level side (or on the low level side) has a shape analogous to the waveform of the transmission signal and its envelope on the low level side (or on the high level side) is at an approximately constant level. A light source 114 converts the modulation signal into a light intensity modulation signal, and outputs the light intensity modulation signal to an optical coupler 120. The above-mentioned signal processing is performed by the signal processing circuit 113, whereby the spectrum distribution of the light signal outputted from the light source 114 is dispersed, and the peak value of light spectra is decreased. The peak value of beat noise produced after receiving is proportional to the peak value of the light spectra, whereby the peak value of the beat noise is also decreased.
摘要:
A SW (70) receives an Ethernet® signal from an outside of areas E and F. The SW (70) selects and outputs the obtained Ethernet® signal to any one of APs (91a to 91e) in accordance with a network structure managed by the SW (70). The AP (91a to 91e) converts the Ethernet® signal to an electrical signal type wireless LAN signal, which is in turn output to a main station (10). The main station (10) frequency-multiplexes the signal output from each of the APs (91a to 91e), and converts the signal to an optical signal, which is in turn output to sub-stations (20a and 20b) The sub-station (20a and 20b) transmits the signal transmitted from the main station (10) to a terminal in the form of a wireless radio wave. Thereby, when a plurality of communication areas are present, the accommodation capacity of an AP can be effectively utilized in each communication area.
摘要:
A SW (70) receives an Ethernet® signal from an outside of areas E and F. The SW (70) selects and outputs the obtained Ethernet® signal to any one of APs (91a to 91e) in accordance with a network structure managed by the SW (70). The AP (91a to 91e) converts the Ethernet® signal to an electrical signal type wireless LAN signal, which is in turn output to a main station (10). The main station (10) frequency-multiplexes the signal output from each of the APs (91a to 91e), and converts the signal to an optical signal, which is in turn output to sub-stations (20a and 20b). The sub-station (20a and 20b) transmits the signal transmitted from the main station (10) to a terminal in the form of a wireless radio wave. Thereby, when a plurality of communication areas are present, the accommodation capacity of an AP can be effectively utilized in each communication area.
摘要:
An optical fiber radio transmission system is provided which is capable of considerably improving the received dynamic range of radio signals and, in addition, is capable of optically transmitting radio signals while preventing the deterioration of transmission performance and the loss of linearity of an input signal more easily. A received level detection section 111 detects which one of predetermined levels, i.e., Level I, Level II, and Level III, the received level of a radio signal received by an antenna 400 falls under. A signal control section 112 performs an amplification/attenuation process on the radio signal in accordance with the detected level. A control information sending section 113 superimposes control information indicating the detected level on a primary signal obtained after the amplification/attenuation process. This signal is converted to an optical signal and transmitted. An optical to electrical conversion section 211 converts the optical signal received from a transmitting unit to an electrical signal. A control information extraction section 212 extracts the level from the control information, which has been superimposed on the primary signal. A signal control section 213 performs an amplification/attenuation process on the primary signal in accordance with the extracted level.
摘要:
An oscillator outputs an additional signal with a frequency which is higher than a frequency corresponding to a bandwidth of a frequency band allotted to an electrical signal to be transmitted and lower than a half of a lowest frequency of a frequency band allotted to the electrical signal to be transmitted. Thereby, if a second order intermodulation distortion between the additional signal and the electrical signal to be transmitted occurs, a frequency where distortion occurs is outside all of the frequency bands allotted to the electrical signal to be transmitted, and the occurring second order intermodulation distortion does not affect the electrical signal to be transmitted. Further, if the second order intermodulation distortion of the additional signal occurs, the frequency where distortion occurs is outside all of the frequency bands allotted to the electrical signal to be transmitted, and the occurring second order intermodulation distortion does not affect the electrical signal to be transmitted. Not only noise and distortions caused by reflected optical signal but also OBI noise can be reduced by using the additional signal.
摘要:
A wireless communication system capable of keeping a level of a wireless signal received by a relay apparatus within a predetermined dynamic range. In a control apparatus, a transmitting section converts a downstream electric signal into a downstream optical signal and transmits the downstream optical signal to the relay apparatus via an optical transmission path. The relay apparatus converts the received downstream optical signal into a downstream electric signal and transmits the downstream electric signal as a wireless signal to a wireless communication terminal from a transmitting/receiving antenna section. In the relay apparatus, a level adjustment section adjusts the level of the wireless signal transmitted by the relay apparatus such that the receiving level of the wireless signal received by the relay apparatus is kept within a predetermined range.
摘要:
A center station 1 generates an all-channel signal 2 obtained by multiplexing signals on all channels, and transmits the signals to a selective distribution station 10 through 1 wire transmission line such as an optical fiber. Subscribers' transmitting devices 40.sub.1 to 40.sub.N transmit requests for channels to be received by corresponding subscribers' receiving devices 30.sub.1 to 30.sub.N to the selective distribution station 10 in a radio transmission system. The selective distribution station 10 selects the signals on the channels requested from the all-channel signal 2 in response to requests to receive channels serving as up-signals transmitted in a radio transmission system from the subscribers' transmitting devices 40.sub.1 to 40.sub.N, and distributes and transmits the selected signals to the subscribers' receiving devices 30.sub.1 to 30.sub.N as down-signals.
摘要:
A signal for which the amplitude of envelope becomes substantially 0 only for a certain period of time within the time of a period T, and a measured signal having a certain amplitude are synthesized, and the synthesized signal is optically transmitted. When a plurality of reflection points are present on a light transmission line, there is an increase in harmonic distortion or intermodulation distortion as well as in cross modulation distortion after receiving. This increase in cross modulation distortion causes an increase in variation of amplitude of the measured signal. In such a case, it is possible to calculate the distance between, and/or reflectance of, reflection points present on end faces of optical elements and/or connecting points of optical fibers on the light transmission line by investigating first periodical characteristics of variation of the transmitted measured signal during transmission relative to the change in central light frequency of the signal light, or investigating second periodical characteristics of variation of the transmitted measured signal during transmission corresponding to the change in the frequency of the measured signal.
摘要:
The present invention is directed to a wireless communication system capable of keeping a level of a wireless signal received by a relay apparatus (20) within a predetermined dynamic range. In a control apparatus (10), a transmitting section (102) converts a downstream electric signal into a downstream optical signal and transmits the downstream optical signal to the relay apparatus (20) via an optical transmission path (40). The relay apparatus (20) converts the received downstream optical signal into a downstream electric signal and transmits the downstream electric signal as a wireless signal to a wireless communication terminal (30) from a transmitting/receiving antenna section (204). In the relay apparatus (20), a level adjustment section (207) adjusts the level of the wireless signal transmitted by the relay apparatus (20) such that the receiving level of the wireless signal received by the relay apparatus is kept within a predetermined range.